高一数学经典例题及解法

高一数学经典例题及解法

ID:35653486

大小:1.74 MB

页数:14页

时间:2019-04-06

高一数学经典例题及解法_第1页
高一数学经典例题及解法_第2页
高一数学经典例题及解法_第3页
高一数学经典例题及解法_第4页
高一数学经典例题及解法_第5页
资源描述:

《高一数学经典例题及解法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、集合集合,本身就是一个强有力的数学工具,高中数学学习的集合,可以说,仅仅是集合世界里的沧海一粟,我们学习了集合的概念,子集交集并集等概念,一些简单的集合运算与集合间的关系,但是高中考查集合的题目,基本上属于容易题,但也不乏中难题。做集合的题目,一定要细心,要特别当心的,比如有没有讨论空集啊,真子集和子集的区别啊,交集和并集有没有取错啊,等等。基础知识一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集(3)集合的表示法:列举法,描述法,图示法2、集合间的关系:

2、子集:对任意,都有,则称A是B的子集。记作真子集:若A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集,记作AB集合相等:若:,则3.元素与集合的关系:属于不属于:空集:4、集合的运算:并集:由属于集合A或属于集合B的元素组成的集合叫并集,记为交集:由集合A和集合B中的公共元素组成的集合叫交集,记为补集:在全集U中,由所有不属于集合A的元素组成的集合叫补集,记为5.集合的子集个数共有个;真子集有–1个;非空子集有–1个;6.常用数集:自然数集:N正整数集:整数集:Z有理数集:Q实数集:R例题【分

3、析】A中至多有一个元素,换句话说,方程至多有一个解,也就是说,要么,方程无解,要么方程只有一个解。又因为二次项系数是a,我们不能确定这个方程到底是一元一次方程还是一元二次方程,所以就要对a是否等于0进行分类讨论。函数高一的函数包含了初中已学过的一次函数、二次函数、反比例函数,但是更多的,注重这些函数本质的研究,研究的是多种形式共存的函数的共性——单调性、奇偶性、周期性等等,都是函数重要的性质。函数的多重转化,也许一个函数只是一个数,也可以使一个式子,也可以是多个不同种类的函数组成一个新的函数。研究函数,不仅要

4、从解析式,更要从图像、从实际应用的角度出发,构建一个完整的数学体系。基础知识一、函数的奇偶性1、定义:奇函数<=>f(–x)=–f(x),偶函数<=>f(–x)=f(x)(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形;(2)偶函数的图象关于y轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数;(4)如果一个函数的图象关于y轴对称,那么这个函数是偶函数.二、函数的单调性1、定义:对于定义域为D的函数f(x),若任意的x1,x2∈D,且x1

5、=>f(x1)–f(x2)<0<=>f(x)是增函数②f(x1)>f(x2)<=>f(x1)–f(x2)>0<=>f(x)是减函数2、复合函数的单调性:同增异减三、二次函数y=ax2+bx+c()的性质1、顶点坐标公式:,对称轴:,最大(小)值:2.二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)两根式.四、指数与指数函数1、幂的运算法则:(1)am•an=am+n,(2),(3)(am)n=amn(4)(ab)n=an•bn(5)(6)a0=1(a≠0)(7)(8)(9)2、根式的性质(1).(

6、2)当为奇数时,;当为偶数时,.4、指数函数y=ax(a>0且a≠1)的性质:(1)定义域:R;值域:(0,+∞)(2)图象过定点(0,1)Y0X1a>10YX10b=logaN(2)loga1=0(3)logaa=1(4)logaab=b(5)alogaN=N(6)loga(MN)=logaM+logaN(7)loga()=logaM--logaN(8)logaNb=blogaN(9)换底公式:logaN=(10)推

7、论(,且,,且,,).(11)logaN=(12)常用对数:lgN=log10N(13)自然对数:lnA=logeA(其中e=2.71828…)2、对数函数y=logax(a>0且a≠1)的性质:(1)定义域:(0,+∞);值域:R(2)图象过定点(1,0)X0Y101六、幂函数y=xa的图象:(1)根据a的取值画出函数在第一象限的简图.a<001例如:y=x2七.图象平移:若将函数的图象右移、上移个单位,得到函数的图象;规律:左加右减,上加下减八.平均增长率的问题如果原来产值

8、的基础数为N,平均增长率为,则对于时间的总产值,有.九、函数的零点:1.定义:对于,把使的X叫的零点。即的图象与X轴相交时交点的横坐标。2.函数零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并有,那么在区间内有零点,即存在,使得,这个C就是零点。例题:0≤x≤2→0≤2x≤4→f(x)定义域为【0,4】,又因为x≠1所以g(x)定义域为【0,1)∪(1,4】下面是关于二次函数、一元二次

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。