高一数学不等式解法经典例题

高一数学不等式解法经典例题

ID:47477481

大小:651.50 KB

页数:12页

时间:2020-01-11

高一数学不等式解法经典例题_第1页
高一数学不等式解法经典例题_第2页
高一数学不等式解法经典例题_第3页
高一数学不等式解法经典例题_第4页
高一数学不等式解法经典例题_第5页
资源描述:

《高一数学不等式解法经典例题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.典型例题一例1解不等式:(1);(2).分析:如果多项式可分解为个一次式的积,则一元高次不等式(或)可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为把方程的三个根顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为(2)原不等式等价于∴原不等式解集为说明:用“穿根法”解不等式时应注意:①各一次项中的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2解下列分式不等式:(1);(2)分析:当分式不等式

2、化为时,要注意它的等价变形..①②(1)解:原不等式等价于用“穿根法”∴原不等式解集为。(2)解法一:原不等式等价于∴原不等式解集为。解法二:原不等式等价于用“穿根法”∴原不等式解集为典型例题三..例3解不等式分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义二是根据绝对值的性质:或,因此本题有如下两种解法.解法一:原不等式即∴或故原不等式的解集为.解法二:原不等式等价于即∴.典型例题四例4解不等式.分析:这是一个分式不等式,其左边是两个关于二次式的商,由商的符号法则,它等价于下列两个不等式组:或所以,原

3、不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.解法一:原不等式等价下面两个不等式级的并集:或或..或或或.∴原不等式解集是.解法二:原不等式化为.画数轴,找因式根,分区间,定符号.符号∴原不等式解集是.说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解.解法二中,“定符号”是关键.当每个因式的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间.在解题时要正确运用.典型例题五例5解不等式.分析:不等式左右两边都是含

4、有的代数式,必须先把它们移到一边,使另一边为0再解.解:移项整理,将原不等式化为.由恒成立,知原不等式等价于.解之,得原不等式的解集为.说明:此题易出现去分母得的错误解法.避免误解的方法是移项使一边为0再解.另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理...典型例题六例6设,解关于的不等式.分析:进行分类讨论求解.解:当时,因一定成立,故原不等式的解集为.当时,原不等式化为;当时,解得;当时,解得.∴当时,原不等式的解集为;当时,原不等式的解集为.说明:解不等式时,由于,因此不能

5、完全按一元二次不等式的解法求解.因为当时,原不等式化为,此时不等式的解集为,所以解题时应分与两种情况来讨论.在解出的两根为,后,认为,这也是易出现的错误之处.这时也应分情况来讨论:当时,;当时,.典型例题七例7解关于的不等式.分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解.解:原不等式或由,得: 由判别式,故不等式的解是...当时,,,不等式组(1)的解是,不等式组(2)的解是.当时,不等式组(1)无解,(2)的解是.综上可知,当时,原不等式的解集是;当时,原不等式的解集是.说明:本题分类讨论标准“,”是依据“已知及(1

6、)中‘,’,(2)中‘,’”确定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.本题易误把原不等式等价于不等式.纠正错误的办法是熟练掌握无理不等式基本类型的解法.典型例题八例8解不等式.分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可.解答:去掉绝对值号得,∴原不等式等价于不等式组∴原不等式的解集为.说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,

7、变成求不等式组的解.典型例题九..例9解关于的不等式.分析:不等式中含有字母,故需分类讨论.但解题思路与一般的一元二次不等式的解法完全一样:求出方程的根,然后写出不等式的解,但由于方程的根含有字母,故需比较两根的大小,从而引出讨论.解:原不等式可化为.(1)当(即或)时,不等式的解集为:;(2)当(即)时,不等式的解集为:;(3)当(即或1)时,不等式的解集为:.说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根,,因此不等式的解就是小于小根或大于大根.但

8、与两根的大小不能确定,因此需要讨论,,三种情况.典型例题十例10已知不等式的解集是.求不等式的解集.分析:按照一元二次不等式的一般解法,先确定系数的正负,然后求出方程的两根即可解之.解:(解法1)由题可判断出,是方程的两

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。