欢迎来到天天文库
浏览记录
ID:35616628
大小:1.81 MB
页数:20页
时间:2019-04-02
《辽宁省实验中学等五校高三上学期期末考试数学(文)---精校解析 Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、www.ks5u.com高三年级上学期期末考试试卷数学(文)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,则()A.B.C.D.【答案】A【解析】【分析】解一元二次不等式求得集合,解对数不等式求得集合,再求两个集合的交集得出选项.【详解】由解得,由解得,两个集合相等,故,所以选A.【点睛】本小题主要考查集合交集的概念及运算,考查一元二次不等式的解法,考查对数不等式的解法,属于基础题.解一元二次不等式的过程中,要注意对应一元二次函数的开口方向.解对数不等
2、式要注意对应的对数函数的底数,底数属于区间或者,对数不等式的解集是不一样的.2.若复数满足,其中为虚数单位,则()A.B.C.D.【答案】C【解析】分析:设复数,利用相等,求得,进而可求复数的模.详解:设复数,则,则,所以,所以,故选C.点睛:本题考查了复数相等的概念和复数模的求解,着重考查了学生的推理与运算能力.3.设,则“”是“函数在定义域上是奇函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.-20-既不充分也不必要条件【答案】A【解析】【分析】注意到当时,函数是奇函数,故是函数为奇函数的充分不必
3、要条件.【详解】当时,,,函数为奇函数;当时,,,函数为奇函数.故当时,函数是奇函数,所以是函数为奇函数的充分不必要条件.故选A.【点睛】本小题主要考查充要条件的判断,考查函数奇偶性的定义以及判断,属于基础题.4.若两个正实数满足,且不等式有解,则实数的取值范围是( )A.B.C.D.【答案】B【解析】分析:不等式有解,即为大于的最小值,运用乘1法和基本不等式,计算即可得到所求最小值,解不等式可得m的范围.详解:正实数满足则=4,当且仅当,取得最小值4.由x有解,可得解得或.故选D.点睛:本题考查不等式成立的条件,注
4、意运用转化思想,求最值,同时考查乘1法和基本不等式的运用,注意满足的条件:一正二定三等,考查运算能力,属中档题.5.过抛物线的焦点作斜率为的直线,与抛物线在第一象限内交于点,若,则()A.4B.2C.1D.【答案】B【解析】-20-【分析】设A,根据抛物线的定义知,又,联立即可求出p.【详解】设A,根据抛物线的定义知,又,联立解得,故选B.【点睛】本题主要考查了抛物线的定义及斜率公式,属于中档题.6.将函数图象上各点的横坐标缩短到原来的,纵坐标不变,然后向左平移个单位长度,得到图象,若关于的方程在上有两个不相等的实根,则
5、实数的取值范围是()A.B.C.D.【答案】C【解析】分析:根据三角函数的图象变换关系求出的解析式,结合三角函数的图象进行求解即可.详解:将函数图象上个点的横坐标缩短到原来的,纵坐标不变,得到,然后向左平移,得到,因为,所以,当时,,函数的最大值为,要使在上有两个不相等的实根,则,即实数的取值范围是,故选C.点睛:本题主要考查了三角函数的图象与性质,其中解答中求出函数的解析式以及利用整体转换法是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题比较基础,属于基础题.7.数列满足,,是数列前5项和
6、为()-20-A.B.C.D.【答案】C【解析】【分析】利用递推公式求得的值.进而利用裂项相消求和法,求得的值.【详解】由递推公式,将,代入得,解得;将代入递推公式得,解得.同理解得,所以.【点睛】本小题主要考查递推公式求数列的前几项,考查裂项求和法求数列前几项的和.属于中档题.8.如图所示,直线为双曲线:的一条渐近线,是双曲线的左、右焦点,关于直线的对称点为,且是以为圆心,以半焦距为半径的圆上的一点,则双曲线的离心率为()A.B.C.2D.3【答案】C【解析】设焦点关于渐近线的对称点为,则,又点在圆上,,故选C.-20
7、-9.在中,角所对的边分别是,已知,且,则的面积是()A.B.C.或D.或【答案】D【解析】【分析】先利用两角和与差的正弦公式、二倍角公式化简已知条件,并用正弦定理转为边的形式,然后用余弦定理列方程组,解方程组求得的长,由三角形面积公式求得三角形的面积.【详解】依题意有,即或.当时,由正弦定理得①,由余弦定理得②,解由①②组成的方程组得,所以三角形面积为.当时,,三角形为直角三角形,,故三角形面积为.综上所述,三角形的面积为或,故选D.【点睛】本小题主要考查两角和与差的正弦公式、二倍角公式,考查利用正弦定理和余弦定理解三
8、角形,考查三角形的面积公式,考查了化归与转化的数学思想方法.在化简的过程中,要注意运算化简,当时,可能是或者,即解的情况有两种,不能直接两边约掉.10.已知四面体,,则该四面体外接球的半径为()A.1B.C.D.【答案】B【解析】【分析】-20-取直角三角形的斜边中点,点即的外心,球心在其正上方,作出球心后,利用余弦
此文档下载收益归作者所有