欢迎来到天天文库
浏览记录
ID:35522150
大小:60.70 KB
页数:5页
时间:2019-03-25
《《《一元二次方程解法》》配方法的拓展与应用2(沪科)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、配方法的拓展与应用配方法,在数学上是指将代数式通过凑配等手段,得到完全平方形式,再利用诸如完全平方项是非负数这一性质达到增加题目条件等目的的一种数学方法,同一个式子可以有不同的配方结果,可以配一个平方式,也可以配多个平方式。配方的对象也具有多样性,数、字母、式、函数关系等都可以进行配方。配方法在解题中有广泛的应用,它可用于无理式证明、化简、求代数式的值、解方程、解不等式、求最值、证明条件等式等。新规程标准提出通过学习使学生能够获得基本的数学思想方法,浙教版八(下)数学学习了用配方法解一元二次方程,配方法作为一种常用的数学方法,针对浙八(下)内
2、容,我对配方法的应用进行了一些拓展。1.配方法在确定二次根式中字母的取值范围的应用在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。例1、求二次根式睑-2a+3中字母q的取值范围分析:根据二次根式的定义,必须被开方数大于等于零,再观察被开方数可以发现可以利用配方法求得。解Jcz$—2(1+3=J(/-2a+1)+2=J(a-])_+2因为无论。取何值,都有(0一1)~、°。所以Q的取值范围是全体实数。点评:经过配方,观察被开方数,然后利用被开方数必须人于等于零求得所需要的解。2.配方法在化简二次根式中的应用
3、在二次根式的化简中,也经常使用配方法。例2、化简J6-2石分析:题屮含有两个根号,化简比较困难,但根据题目的结构特征,可以发现6-2侖可以写成5-2V5+l=(V5-l)从而使题目得到化简。解.』6-2亦二丁5+2点+1=J(亦尸+2石+12二J苗+1)2二馅+1点评:厶+2丽的题型,一般可以转化为+仮+"(其中x^y=aU=z?)來化简。3.配方法在证明代数式的值为正数、负数等方面的应用在证明代数式的值为正数或负数,配方法也是一种重要的方法。例3、不管%取什么实数,-,+2兀—3的值一定是个负数,请说明理由。分析:本题主要考查利用配方法
4、说明代数式的值恒小于0,说明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“―/+负数”的形式。解:-x2+2x-3=-U2-2x)-3=-(^2-2x+1)+1-3=-(^-1)2-2・・—(x—1)_W0.—(x—1)~—2<0•9••O因此,无论X取什么实数,-F+2尢一3的值是个负数。2点评:证明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“一°+负数”的形式來证明。例4、不管X取什么实数,扌+2兀+5的值一定是一个正数,你能说明理由吗?分析:要证»+2尢+5一定是一个正数,只要把它化为“"+正数”的形式即可。解.兀
5、2+2x+5=+2x+1)+4=(x+1)~+4..(x+1)2>0・(x+1)2+4>0•9••因此,不管X取什么实数,F+2X+5的值一定是个正数。点评:证明一个二次三项式恒大于0的方法是通过配方将二次三项式化成“/+正数”的形式来证明。1.配方法在解某些二元二次方程中的应用解二元二次方程,在课程标准屮不属于考试内容,但有些问题,还是可以利用我们所学的方法得以解决。例5、解方程F+尸+4x-2y+5=0。分析:本题看上去是一个二元二次方程的问题,实质上它是一个非负数问题。解:由〒+;/+4—2丁+5=0整理为(x2+4无+4)+(于+-2
6、y+1)=0(x+2)2+(y-l)2=0V(x+2)2>0,(y—1尸20,・••兀+2=0,y—1=0,x=—2,y=o{兀+2=0问题,把生疏问题转歹-1二0化为熟悉问题,体现了数学的转化思想,正是我们学习数学的真正目的。1.配方法在求最大值、最小值中的应用在代数式求最值屮,利用配方法求最值是一种重要的方法。可以使我们很跨求出所要求的最值。例6、若兀为任意实数,求+4x4-7的最小值。分析:求x2+4x+7的最小值,可以先将它化成(x+2)2+3,根据(兀+2尸》0,求得它的最小值为3。解:亍+4兀+7=(/+4兀+4)+3=(兀+2
7、)2+3・・・0+2)2»0,・•・(兀+2)2+3A3,因此,x2+4x+7的最小值为3。点评:配方法是求一元二次方程根的一种方法,也是推导求根公式的工具,同时也是求二次三项式最值的一种常用方法。例7、若兀为任意实数,求—2兀彳+4兀+7的最大值。分析:求一2/+4兀+7最大值,可以先将它化成—2(x-1)2+9,然后根据-2(x-l)2<0,求得它的最大值为9。解:-2x2+4x+7=-2(x2-2x)4-7=-2(x2-2x4-l)4-2+7=-2(x-l)2+9*•*—2(x—I)?S0,・°・一2(x—1)~+9S9因此—2兀~+4
8、-x+7有最大值为9o点评:求二次三项式的最大值或最小值,可以先将它们化成a(x+Z?)2+c的形式,然后再判断,当a>0时,它有最小值c;当d<0时,它有最大值c
此文档下载收益归作者所有