数值分析与实验(数学081张燃3080801119)

数值分析与实验(数学081张燃3080801119)

ID:35505553

大小:69.54 KB

页数:10页

时间:2019-03-25

数值分析与实验(数学081张燃3080801119)_第1页
数值分析与实验(数学081张燃3080801119)_第2页
数值分析与实验(数学081张燃3080801119)_第3页
数值分析与实验(数学081张燃3080801119)_第4页
数值分析与实验(数学081张燃3080801119)_第5页
资源描述:

《数值分析与实验(数学081张燃3080801119)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、08级应用数学《数值分析与实验(实践)》任务书一、设计目的通过《数值分析与实验(实践)》实践环节,掌握本门课程的众多数值解法和原理,并通过编写C语言或matlab程序,掌握各种基本算法在计算机中的具体表达方法,并逐一了解它们的优劣、稳定性以及收敛性。在熟练掌握C语言或matlab语言编程的基础上,编写算法和稳定性均佳、通用性强、可读性好,输入输出方便的程序,以解决实际中的一些科学计算问题。二、设计教学内容1、利用所给数据进行数据的多项式和可转化成多项式形式的函数拟合;试分别用抛物线y=°+加+ex?和指数曲线y=3拟合下列数据11.522.533.544.533.4

2、79.50122.65159.05189.15214.15238.65252.5055.566.577.58267.55280.50296.65301.40310.40318.15325.15比较2个拟合函数的优劣。三、设计时间共计一周2011—2012学年第1学期:第16周教师签名:2010年12月12H冃us数值计算方法是一种利用计算机解决数学问题的数值近似解方法,特别是无法用人工过计算器计算的数学问题。数值计算方法常用于矩阵高次代数方程矩阵特征值与特征向量的数值解法,插值法,线性方程组迭代法,函数逼近,数值积分与微分,常微分方程初值问题数值解等。作为数学与计算

3、机之间的一条通道,数值计算的应用范围已十分广泛,作为用计算机解决实际问题的纽带,数值算法在求解线性方程组,曲线拟合、数值积分、数值微分,迭代方法、插值法、拟合法、最小二乘法等应用广泛。数值计算方法是和计算机紧密相连的,现代计算机的出现为大规模的数值计算创造了条件,集屮而系统的研究适用于计算机的数值方法是十分必耍的。数值计算方法是在数值计算实践和理论分析的基础上发展起来的。通过数值计算方法与实验将有助于我们理解和掌握数值计算方法基木理论和相关软件的掌握,熟练求解一些数学模和运算。并提高我们的编程能力來解决实际问题。摘要对于木次计算方法与实习的实践环节,我们采用最小二乘

4、法对给定的数据进行拟合,在MATLAB程序下分别用抛物线与指数函数拟合。通过误差平方和分析,我们发现木组数据在抛物线卜•拟合程度较好。通过木次实践环节,我们很好的了解了最小二乘法的原理。出色的完成了本次课程设计。[关键字]:最小二乘法;拟合函数;抛物线;指数曲线nus1摘要2实验设计内容4一•曲线拟合研究41.1实验目的41・2实验内容41・3算法41.4Matlab程序51.4.1抛物线拟合运行结果61.4.2指数函数拟合运行结果61・5结果分析71.5.1抛物线的误差平方和分析71.5.2指数函数的误差平方和分析7参考文献9实验设计内容曲线拟合研究1.1实验目的

5、:了解最小二乘法的基本原理,通过计算机解决实际问题;1.2实验内容:利用所给数据进行数据的多项式和可转化成多项式形式的函数拟合试分别用抛物线y=Q+以+卅和指数曲线拟合下列数据11.522.533.544.5V/33.479.50122.65159.05189.15214.15238.65252.5055.566.577.58267.55280.50296.65301.40310.4031&15325.15比较2个拟合函数的优劣。1.3算法已知数据(兀,诙=1,2,...,叭求多项式呛)再%佃<"),使得n(m、2①(亦,...%)=篦吧为最小。注意到此时沁)=「多

6、项式系数%%,宀满足下面的线性方程组:S()S[...Sm片S]S2...Sm+]%=T•••••••••••••••_Sm»+]…S2m__aln_TL加」其中Sk7=1(k=0,1,2,...,2m)Tk=XyjxKj./=!(k=0丄然后只要调用解线性方程组的函数程序即可。1.4Matlab程序如下:functionZXE(x,y,m)S=zeros(1,2*m+1);T=zeros(m+1,1);fork二l:2*m+lS(k)=sum(x.八(k~l));endfork=l:m+lT(k)=sum(x.八(k~l).*y);endA=zeros(m+1,

7、m+1);a=zeros(m+1,1);fori二l:m+lforj=l:m+lA(i,j)=S(i+j-l);endenda=AT:fork=l:m+lfprintf('a[%d]=%f,,k,a(k));end1.4.1抛物线拟合运行结果:在MATLAB软件里输入:x二[11.522.533.544.555.566.577.58];y=[33.479.50122.65159.05189.15214.15238.65252.50267.55280.50296.65301.40310.40318.15325.15];m=2;ZXE(x,y,m)输出结果:a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。