实时大数据分析是网络分析的一种新方法[指南]

实时大数据分析是网络分析的一种新方法[指南]

ID:35342649

大小:57.36 KB

页数:5页

时间:2019-03-23

实时大数据分析是网络分析的一种新方法[指南]_第1页
实时大数据分析是网络分析的一种新方法[指南]_第2页
实时大数据分析是网络分析的一种新方法[指南]_第3页
实时大数据分析是网络分析的一种新方法[指南]_第4页
实时大数据分析是网络分析的一种新方法[指南]_第5页
资源描述:

《实时大数据分析是网络分析的一种新方法[指南]》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实吋大数据分析是网络分析的一种新方法当被分解到其最简单的形式时,大数据分析包括两部分,以便将自身与数据仓库和商业智能进行区分:实时行动、分布式,并行处理大数据分析能够解决处理大量无关且不能存放在一个单一的服务器或数据库的数据集所带来的普遍的挑战问题。而这个问题可以通过使用分布式并行处理分布在多个服务器的大型数据集得以解决海台服务器处理并行数据的一部分。大数据分析可以与结构化和非结构化数据工作”因为它并不需要一个特定的结构。尽管目前有方法来处理大量的数据,大数据处理缩小以便能够在指定的时间内完成。现在,时限这一概念比以往任何时候都越来

2、越都多的与"实时"相关。尽管(实时行动、分布式,并行处理)仍然是一个相对较新的概念,但其解决了实时主动或被动的采取措施的需求。而这是基于互联网内容和服务提供商们了解到了正在发生的事情,检查情况并实时采取行动。理解〃实时"在实时大数据分析:新兴架构大会上,某知名人士问道,〃所谓的实时到底有多'实时?'”这取决于你的目标,问题的答案会有动态的变化。在某些情况下,秒或毫秒就足够了,而在另一些t青况下,实时需要更快。这个问题是从电信方面很有趣。它揭示了当前的电信运营商们如果想要成功的解决公司所带来的流量挑战所必须面临的一个潜在的弱点。这样的

3、话,目前在电信行业所能够接受的〃实时〃的标准就显得不再足够了。此前,电信网络使用面向连接的技术。程序只能进行集中在一个高度结构化的进程,前一分钟的网络与后一分钟并没有多大的修改,甚至时间跨度一小时也不会有太大改变。在这些情况下,在一致的时间间隔从网络上收集信息就知道发生了什么。该协议的管理信息丰富,能够从一个协议聚集大量的洞察力。在这种情况下实时”可以在几秒钟之内甚至几分钟内定义,这就是为什么他们通过每5到15分钟收集呼叫详细记录就能充分获得完全的洞察力的原因了。同样的情形在今天已经不再可能。向LTE的过渡使电信运营商完成过渡到基于

4、以太网和IP的数据包网络,其功能与面向连接的技术和协议是完全不同的。IP网络的一个基本原则是:网络是自给自足的。网络提供了流量传输的通道,并依据流量拥堵和其他情况进行网络路径重定向。这个特点使网络能够迅速就相关的改变做出回应。缺点是无法确切地预测流量。这种情况又因某网和IP协议变得复杂,缺乏面向连接的协议所能提供的同等水平的管理信息。分组传输网络(Packetnetworks)本质上也是动态的,因为其设计初衷是为多个用户共享相同的基础设施提供服务的。在较长的一段时间,网络的消耗看起来很低,但在现实中流量传输需求很大,可能消耗掉所有可

5、用的带宽。在这种情况下,对IP网络应该做出反馈,确保流量是在稳定的网络上传输。最终,在网络中可能从一个IP包或某网帧到下一个发生变化。电信网络管理和数据分析的中心问题是他们都依靠事件详细记录(EDRs),CDRs和IP详细记录(IPDRs)来深入了解实时发生的状况。在过去,〃实时"这一定义每隔几分钟就已经足够了。当我们考虑到某网帧在10Gbps网络可以以每帧短短67纳秒的时间在之间以太网帧传输,我们就开始理解在一个分组传输网络的〃实时"指的是什么了。在现如今这个快节奏的环境"实时〃的概念已经不仅不是分钟,也不是秒来。今天,其是以纳秒

6、为时间间隔了。实时评估使用CDRs”EDRs和IPDRs进行大数据分析是一个好主意”这取决于企业正在努力完成的彳壬务。大数据分析可以以两种方式制定决策:实时决策根据趋势及预测分析加强规划,以及服务和网络的优化禾I」用明细记录、以及其他结构化和非结构化数据源进行优化和规划是必要的。这些记录包括丰富的信息,帮助预测有用的趋势。除非辅以分组网络的实时信息,提供关于发生了什么的精确细节,否则这些信息将无法提供一个完整的视图。不幸的是,详细的记录不能用于实时决策,因为其只是每5至15分钟的时间间隔进行收集。这个时间间隔与我们对什么是真正分组网

7、络实时的理解不兼容。其需要不断收集,存储和分析真正的实时网络信息,进行决策。要理解网络正在发生什么,必须对所有相关的某网帧与IP数据包进行实时审查。通过以这种方式捕获和存储网络信息,我们不仅具备了能够分析使用实时信息的能力,同时也可以为我们提供i了解在信息网络发生了什么事件的基础的详细可靠的方式以补充其他大数据的活动的洞察。(实时行动、分布式,并行处理)在电信行业的应用实时数据采集层可以为决策制定提供可操作的、层岀不穷的材料。无论是电信管理论坛和IP网络监控的服务质量智能支持(IPNQSIS)项目,以及欧洲计划的一部分,都曾研究过这

8、个需求,作为提升各自客户体验管理的努力的一部分。这两个项目的结论是,探头和设备对于了解在网络中正在发生的事情的可靠,实时洞察是必要的。典型地,探头数据采集器将数据传送到其他管理系统,而设备使用相同的技术,而且能够分析数据,并可以在本地

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。