代数重点难点总结

代数重点难点总结

ID:35321017

大小:147.50 KB

页数:5页

时间:2019-03-23

代数重点难点总结_第1页
代数重点难点总结_第2页
代数重点难点总结_第3页
代数重点难点总结_第4页
代数重点难点总结_第5页
资源描述:

《代数重点难点总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、名思教育-----我的成功不是偶然!名思教育个性化拓展练习代数重点难点总结方程(组)一、基本概念1.方程、方程的解(根)、方程组的解、解方程(组)二、一元二次方程1.定义及一般形式:2.解法:⑴直接开平方法(注意特征)⑵配方法(注意步骤—推倒求根公式)⑶公式法:⑷因式分解法(特征:左边=0)3.根的判别式:4.根与系数的关系(韦达定理):+=,=逆定理:若,则以,为根的一元二次方程是:a(x-)(x-)=0。5.常用等式:三、可化为一元二次方程的方程1.分式方程⑴定义⑵基本思想:去分母⑶基本解法:①去分母法②换元法

2、(如,)⑷验根及方法2.无理方程⑴定义⑵基本思想:分母有理化⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法3.简单的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。四、列方程解应用题一概述列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。⑶用含未知数的代

3、数式表示相关的量。⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。⑸解方程及检验。⑹答案。海到无边天作岸,山高绝顶我为峰名思教育-----我的成功不是偶然!综上所述,列方程解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。函数及其图象★重难点★二次函数的图象和性质。一、平面直角坐标系1.各象限内点的坐标的特点2.坐

4、标轴上点的坐标的特点3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数1.表示方法:⑴解析法;⑵列表法;⑶图象法。2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有意义。3.画函数图象:⑴列表;⑵描点;⑶连线。三、二次函数(定义→图象→性质)⑴定义:⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,

5、在对称轴左侧…,右侧…。四、重要解题方法1.用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。2.利用图象二次函数中的k、b;a、b、c的符号。解直角三角形★重难点★解直角三角形一、三角函数1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.2.特殊角的三角函数值:0°30°45°60°90°sinα01cosα10tgα/1海到无边天作岸,山高绝顶我为峰名思教育-----我的成功

6、不是偶然!3.互余两角的三角函数关系:sin(90°-α)=cosα;…4.三角函数值随角度变化的关系5.查三角函数表二、解直角三角形1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。2.依据:①边的关系:②角的关系:A+B=90°③边角关系:三角函数的定义。注意:尽量避免使用中间数据和除法。三、对实际问题的处理1.俯、仰角:2.方位角、象限角:3.坡度:tgα4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。几何四边形★重难点★相交线与平行线、三角形、四边形的有关概念、判定、性质

7、。分类表:1.一般性质(角)⑴内角和:360°⑵顺次连结各边中点得平行四边形。推论1:顺次连结对角线相等的四边形各边中点得菱形。推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。⑶外角和:360°2.特殊四边形⑴研究它们的一般方法:⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定⑶判定步骤:四边形→平行四边形→矩形→正方形┗→菱形——↑⑷对角线的纽带作用:3.对称图形⑴轴对称(定义及性质);⑵中心对称(定义及性质)4.有关定理:①平行线等分线段定理及其推论1、2②三角形、梯形的中位线定理③平行

8、线间的距离处处相等。(如,找下图中面积相等的三角形)5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。6.作图:任意等分线段。海到无边天作岸,山高绝顶我为峰名思教育-----我的成功不是偶然!第十章圆★重难点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。