矩形、菱形的性质定理和判定定理及其证明

矩形、菱形的性质定理和判定定理及其证明

ID:35226217

大小:84.50 KB

页数:5页

时间:2019-03-22

矩形、菱形的性质定理和判定定理及其证明_第1页
矩形、菱形的性质定理和判定定理及其证明_第2页
矩形、菱形的性质定理和判定定理及其证明_第3页
矩形、菱形的性质定理和判定定理及其证明_第4页
矩形、菱形的性质定理和判定定理及其证明_第5页
资源描述:

《矩形、菱形的性质定理和判定定理及其证明》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、矩形、菱形和正方形的性质定理和判定定理及其证明一、知识概述1、矩形的性质定理定理1:矩形的四个角都是直角.说明:(1)矩形具有平行四边形的一切性质. (2)矩形的这一特性可用来证明两条线段互相垂直.定理2:矩形的对角线相等.说明:矩形的这一特性可用来证明两条线段相等.推论:直角三角形斜边上的中线等于斜边的一半.说明:与中位线定理及在直角三角形中,30°角所对的直角边等于斜边的一半一样,这一推论可用来证明线段之间的倍数关系.2、矩形的判定定理定理1:对角线相等的平行四边形是矩形.定理2:有三个角是直角的四边形

2、是矩形.3、菱形的性质定理定理:菱形的四条边都相等.说明:(1)菱形具有平行四边形的一切性质,并且具有它特殊的性质. (2)利用该特性可以证明线段相等.定理2:菱形的对角线互相垂直.并且每条对角线平分一组对角.说明:根据菱形的特性可知,其对角线将它分成四个全等的直角三角形,再由直角三角形的相关性质,证明线段或角的关系,这样就将四边形问题转化为三角形问题来处理.4、菱形的判定定理定理1:对角线互相垂直的平行四边形是菱形.定理2:四条边都相等的四边形是菱形.说明:菱形的两个判定定理起点不同,一个是平行四边形,一

3、个是四边形,判定时的条件不同,一个是对角线互相垂直,一个是四条边都相等.5、正方形的性质普通性质:正方形有四边形、平行四边形、矩形、菱形的一切性质.特有性质:(1)边:四条边都相等,邻边垂直,对边平行;(2)角:四个角都是直角;(3)对角线:①相等,②互相垂直平分,③每条对角线平分一组对角.说明:正方形这些性质根据定义可直接得出.特殊性质——正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°,正方形的两条对角线把正方形分成四个全等的等腰直角三角形.6、正方形的判定(1)判定一个

4、四边形为正方形的主要依据是定义,途径有两种:①先证它是矩形,再证有一组邻边相等;②先证它是菱形,再证有一个角为直角.(2)判定正方形的一般顺序;①先证明是平行四边形;②再证有一组邻边相等(有一个角是直角);③最后证明有一个角是直角(有一组邻边相等).说明:证明一个四边形是正方形的方法很多,但一定注意不要缺少条件.二、重难点知识归纳1、特殊的平行四边形知识结构三、典型例题讲解例1、如图所示,M,N分别是平行四边形ABCD的对边AD,BC的中点,且AD=2AB,求证四边形PMQN为矩形.错解:连接MN.∵四边形

5、ABCD是平行四边形,∴ADBC.又∵M,N分别为AD,BC的中点,∴AMBN.∴四边形AMNB是平行四边形.又∵AB=AD,∴AB=AM,∴口AMNB是菱形.∴AN⊥BM,∴∠MPN=90°.同理∠MQN=90°,∴四边形PMQN为矩形.分析:错在由∠MPN=∠MQN=90°,就证得四边形PMQN是矩形这一步,还需证一个角是直角或证四边形PMQN是平行四边形,证四边形PMQN是平行四边形这种方法比较好.正解:连接MN,∵四边形ABCD是平行四边形,∴ADBC.又∵DM=AD,BN=BC(线段中点定义),∴

6、四边形BNDM为平行四边形.∴BMDN,同理ANMC.∴四边形PMQN是平行四边形.∵AMBN,∴四边形ABNM是平行四边形.又∵AD=2AB,AD=2AM,∴AB=AM,∴四边形ABNM是菱形.∴AN⊥BM,即∠MPN=90°,∴四边形PMQN是矩形.例2、如图所示,4个动点P,Q,E,F分别从正方形ABCD四个顶点同时出发,沿着AB,BC,CD,DA以同样的速度向B,C,D,A各点移动.(1)试判断四边形PQEF的形状,并证明;(2)PE是否总过某一定点?并说明理由;(3)四边形PQEF的顶点位于何处时

7、,其面积有最大值和最小值?最大值和最小值各是多少?分析:(1)猜想四边形PQEF为正方形,先证它为菱形,再证有一直角即可;(2)此问是动态问题,紧紧抓住运动过程中的不变量,即APCE,四边形APCE为平行四边形,易知PE与AC平分于点O;(3)此问中显然当点P,Q,E,F分别运动至与正方形ABCD各顶点重合时面积最大,分析最小值时的情形可根据S正=PE2,而PE最小时是PE⊥AB,此时PE=BC.解:(1)四边形PQEF为正方形,证明如下:在正方形ABCD中,∵AB=BC=CD=DA,AP=BQ=CE=DF

8、,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB,∴∠FPQ=90°.∴四边形PQEF为正方形.(2)连接AC交PE于点O.∵APEC,∴四边形APCE为平行四边形.又∵O为对角线AC的中点,∴对角线PE总过AC的中点.(3)当P运动至与B重合时,四边形PQEF面积最大,等于原正方形面积,当PE⊥AB时,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。