资源描述:
《2017春八年级数学下册2一元一次不等式与一元一次不等式组教案新版北师大版20170301251》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章 一元一次不等式与一元一次不等式组1.经历将一些简单的实际问题抽象为不等式的过程,进一步体会不等式的模型思想,建立符号意识.2.结合具体问题,了解不等式的意义.3.探索并掌握不等式的基本性质.4.理解不等式(组)的解及解集的含义;会解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会用数轴确定其解集.5.通过经历用数轴表示不等式(组)的解集的过程,体会数形结合思想.6.能根据具体问题中的数量关系,列出一元一次不等式,解决简单的实际问题,并能根据具体问题的实际意义,检验结果
2、是否合理,发展应用意识.经历将一些实际问题抽象为不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效模型,感受不等式、方程、函数之间的联系与区别,研究用不等式解决实际问题的方法.1.初步体会不等式、方程、函数之间的内在联系与区别.2.进一步感受数学和生活的联系,体会数学的价值.不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础.本章在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系,通过前面的学习,学生已初步体会
3、到生活中量与量之间的关系是众多而且复杂的,面对大量的同类量,最容易使人想到的就是它们有大小之分.在此之前,学生已初步经历了建立方程模型和函数关系解决一些简单的实际问题的“数学化”过程,为分析量与量之间的关系积累了一定的经验,以此为基础展开不等式的学习,顺理成章.本章首先通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集以及解不等式的概念,然后具体研究一元一次不等式的解、解集、解集的数轴表示,一元一次不等式的解法以及一元一次不等式的简单应用,通过具体实例渗透一元一次不等式、一元一次方程和一次函数
4、的内在联系.最后研究一元一次不等式组的解、解集和一元一次不等式组的解法.根据学生现有的认知基础和认知特点,本章的设计主要有下列特点:(1)提供丰富的实际背景.如等周问题、测树围研究树龄问题、打折销售问题等,这些都为学生探索实际问题中的不等关系提供了生动、丰富的背景.通过研究这些问题,可以进一步发展学生的符号意识,提高学生发现问题、提出问题、分析问题、解决问题的能力,发展模型思想.75(2)突出知识之间的内在联系.不等式与方程、函数一样,都是反映客观事物变化规律及其关系的模型,函数能够刻画事物之间对应变化的过程,方
5、程能够刻画某个变化过程的一瞬间,而不等式则刻画变化过程中同类量之间的一个普遍现象.本章教科书充分注意了这三者之间的联系,并专设一节“一元一次不等式与一次函数”,意在引导学生初步体会从整体中把握部分的思维方法,渗透函数、方程、不等式等重要的数学思想,发展几何直观.具体来讲,第1节“不等关系”,用实例引入,使学生在归纳的过程中认识不等式模型,体会到生活中的不等关系大量存在,并初步建立用不等式模型解决简单实际问题的应用意识.第2节“不等式的基本性质”,类比等式的基本性质研究不等式的基本性质,让学生经历类比、猜想、尝试、
6、归纳、得出结论的合情推理过程,探索不等式的三条基本性质,使学生能够将不等式进行简单转化.第3节“不等式的解集”,用烟花引火线的实例引入,在建立不等式之后研究其解集及数轴表示,让学生结合实际意义来理解不等式的解集,并引导学生感受不等式的解与方程的解的异同.第4节“一元一次不等式”,经历认识一元一次不等式的概念、求解一元一次不等式,以及应用一元一次不等式的过程,逐步积累数学活动经验.本节设计了大量实际问题,如打折销售、知识竞赛等,意图是进一步培养学生的数学应用意识.第5节“一元一次不等式与一次函数”,研究一元一次不等
7、式与一次函数的联系,发展学生对数学的综合认识,建立数学学科内部知识之间的联系,完善学生的认知结构,并运用这种联系解决一些简单的实际问题,发展学生的应用意识.第6节“一元一次不等式组”,将解一元一次不等式组的问题转化为解一元一次不等式的问题,再借助数轴确定其解集.【重点】1.不等式的基本性质.2.不等式(组)的解法.3.不等式(组)的解集及不等式(组)解集的数轴表示.4.不等式与一次函数的关系.【难点】1.经历将一些实际问题抽象为不等式的过程.2.不等式及不等式组的解法.3.根据具体问题中的数量关系,列出一元一次不
8、等式(组),解决简单的实际问题.数学教学是数学活动的教学,是师生交流、互动和共同发展的过程,教学中,要将学生推到学习的前沿,注重发挥学生的学习主体性和主观能动性.1.关注与旧知识的联系,提高思维能力.有效的教学一定要从学生已经知道了什么开始.教学过程中,要关注不等式、函数、方程的内在联系,不等关系与相等关系的辩证关系,要类比等式(方程)进行不等式的教学,这样不仅有利于学生