Pattern Recognition and Machine Learning (Book Part 2).pdf

Pattern Recognition and Machine Learning (Book Part 2).pdf

ID:34974474

大小:3.75 MB

页数:374页

时间:2019-03-15

Pattern Recognition and Machine Learning (Book Part 2).pdf_第1页
Pattern Recognition and Machine Learning (Book Part 2).pdf_第2页
Pattern Recognition and Machine Learning (Book Part 2).pdf_第3页
Pattern Recognition and Machine Learning (Book Part 2).pdf_第4页
Pattern Recognition and Machine Learning (Book Part 2).pdf_第5页
资源描述:

《Pattern Recognition and Machine Learning (Book Part 2).pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、8GraphicalModelsProbabilitiesplayacentralroleinmodernpatternrecognition.WehaveseeninChapter1thatprobabilitytheorycanbeexpressedintermsoftwosimpleequationscorrespondingtothesumruleandtheproductrule.Alloftheprobabilisticinfer-enceandlearningmanipulationsdisc

2、ussedinthisbook,nomatterhowcomplex,amounttorepeatedapplicationofthesetwoequations.Wecouldthereforeproceedtoformulateandsolvecomplicatedprobabilisticmodelspurelybyalgebraicma-nipulation.However,weshallfindithighlyadvantageoustoaugmenttheanalysisusingdiagramm

3、aticrepresentationsofprobabilitydistributions,calledprobabilisticgraphicalmodels.Theseofferseveralusefulproperties:1.Theyprovideasimplewaytovisualizethestructureofaprobabilisticmodelandcanbeusedtodesignandmotivatenewmodels.2.Insightsintothepropertiesofthem

4、odel,includingconditionalindependenceproperties,canbeobtainedbyinspectionofthegraph.3593608.GRAPHICALMODELS3.Complexcomputations,requiredtoperforminferenceandlearninginsophis-ticatedmodels,canbeexpressedintermsofgraphicalmanipulations,inwhichunderlyingmath

5、ematicalexpressionsarecarriedalongimplicitly.Agraphcomprisesnodes(alsocalledvertices)connectedbylinks(alsoknownasedgesorarcs).Inaprobabilisticgraphicalmodel,eachnoderepresentsarandomvariable(orgroupofrandomvariables),andthelinksexpressprobabilisticrelation

6、-shipsbetweenthesevariables.Thegraphthencapturesthewayinwhichthejointdistributionoveralloftherandomvariablescanbedecomposedintoaproductoffactorseachdependingonlyonasubsetofthevariables.Weshallbeginbydis-cussingBayesiannetworks,alsoknownasdirectedgraphicalm

7、odels,inwhichthelinksofthegraphshaveaparticulardirectionalityindicatedbyarrows.TheothermajorclassofgraphicalmodelsareMarkovrandomfields,alsoknownasundirectedgraphicalmodels,inwhichthelinksdonotcarryarrowsandhavenodirectionalsignificance.Directedgraphsareusef

8、ulforexpressingcausalrelationshipsbetweenrandomvariables,whereasundirectedgraphsarebettersuitedtoexpressingsoftcon-straintsbetweenrandomvariables.Forthepurposesofsolvinginferenceproblems,itisoftenconvenientto

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。