欢迎来到天天文库
浏览记录
ID:15568246
大小:759.65 KB
页数:77页
时间:2018-08-04
《prml笔记-notes on pattern recognition and machine learning》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、PRML笔记NotesonPatternRecognitionandMachineLearning(Bishop)Version1.0①JianXiao目录Checklist.....................................................................................................2Chapter1Introduction................................................................................4Ch
2、apter2ProbabilityDistribution............................................................10..................................................14Chapter3LinearModelsforRegression..............................................19Chapter4LinearModelsforClassificationChapter5NeuralNetworks.........
3、.............................................................26Chapter6Kernelmethods........................................................................33Chapter7SparseKernelMachine............................................................39Chapter8GraphicalModels......................
4、...............................................47Chapter9MixtureModelsandEM..........................................................53Chapter10ApproximateInference...........................................................58Chapter11SamplingMethod............................................
5、.......................63Chapter12ContinuousLatentVariables..................................................68Chapter13SequentialData......................................................................72Chapter14CombiningModels..............................................................
6、...74①iamxiaojian@gmail.comChecklistFrequentist-Bayesian对峙构成的主要内容Frequentist版本Bayesian版本解模型所用的方法LinearbasisfunctionBayesianlinearbasisfunction前者和后者皆有closed-formregressionregressionsolutionLogisticregressionBayesianlogitsticregression前者牛顿迭代(IRLS),后者LaplaceapproximationNeuralnetwork(forBayesia
7、nNeuralnetwork(for前者gradientdecent,后者regression,classification)regression,classification)LaplaceapproximationSVM(forregression,RVM(forregression,前者解二次规划,后者迭代、classification)classification)LaplaceapproximationGaussianmixturemodelBayesianGaussianmixt
此文档下载收益归作者所有