基于大数据的实时交通流预测方法研究

基于大数据的实时交通流预测方法研究

ID:34917467

大小:3.42 MB

页数:90页

时间:2019-03-14

基于大数据的实时交通流预测方法研究_第1页
基于大数据的实时交通流预测方法研究_第2页
基于大数据的实时交通流预测方法研究_第3页
基于大数据的实时交通流预测方法研究_第4页
基于大数据的实时交通流预测方法研究_第5页
资源描述:

《基于大数据的实时交通流预测方法研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、广东工业大学硕士学位论文(工学硕士)基于大数据的实时交通流预测方法研究白亚男二○一八年五月分类号:学校代号:11845UDC:密级:学号:2111504134广东工业大学硕士学位论文(工学硕士)基于大数据的实时交通流预测方法研究白亚男指导教师姓名、职称:程良伦教授学科(专业)或领域名称:控制科学与工程学生所属学院:自动化学院论文答辩日期:2018年5月28日ADissertationSubmittedtoGuangdongUniversityofTechnologyfortheDegreeofMaster(MasterofEngineeringScience)ResearchonRe

2、al-TimeTrafficFlowForecastingMethodBasedonBigDataPlatformCandidate:BaiYananSupervisor:Prof.LianglunChengMay2018SchoolofAutomationGuangdongUniversityofTechnologyGuangzhou,Guangdong,P.R.China,510006摘要摘要交通流预测是对道路路段、卡口、路网的交通流量进行预测分析,对于实现智能化交通信息系统,制定合理的交通安检策略和交通管理与诱导措施,缓解道路交通拥堵有重要的意义。然而,使用传统的参数统计模型,

3、非实时和长时训练的方法已经越来越难满足智能交通系统对于非平稳状态下实时交通流信息获取的要求。为了实时获取交通流信息,为现代化智能交通系统的构建提供技术支持,本文对实时数据处理架构和实时交通流预测方法进行了研究。由于道路网络中的数据采集设备众多,对于交通流实时分析的实验平台,需要格外考虑数据并行化采集当中的吞吐量和稳定性问题。针对实时交通流数据平台的实时性、可扩展性、在线处理需求,本文首先对现行的大数据框架进行了分析,设计并搭建了一种适用于高吞吐量交通流数据分析的大数据实时分析架构。同时,本文针对交通流数据的特性进行研究,根据特征参数的获取与计算难度选取关键特征参数。针对交通流数据呈现

4、出的数据缺省,不可信数据和噪声问题进行分析处理,并根据实时分析需求,按空间对交通流数据的特征进行划分。针对道路网络中,道路相互关联,道路特征多,代表特征选取困难的问题,本文使用了PCA方式对道路网络中的海量特征进行降维,选出与待预测道路的主要关联特征,减少了预测模型的训练难度。接着,本文对大数据平台中的预测算法模型进行研究,并通过实验对各个模型进行对比,得出表现最优的SVR模型。最后,本文根据交通流实时预测的评价标准,提出一种在时间维度的基于历史周期数据的his-SVR模型,在保证SVR模型预测效果的基础上,针对SVR模型存在的训练时间长的问题进行优化。实验表明,本文提出的his-S

5、VR预测模型保留了SVR模型的良好的预测能力,其绝对平均差MAE小于5,R2决定系数在0.85以上,并大大缩减了模型的平均训练时间,由10.211s下降到了0.419s,提高了SVR模型作为交通流实时预测算法的效率,提高了实时数据平台的扩展性。关键词:大数据;交通流实时预测;PCA;SVR;his-SVR;I广东工业大学硕士学位论文ABSTRACTTrafficflowforecastingisapredictiveanalysisofthetrafficvolumeofroadsections,bayonet,androadnetworks.Itisgreatsignificanc

6、eforrealizinganintelligenttrafficinformationsystem,formulatingreasonabletrafficmanagementandinducingmeasures,andalleviatingroadtrafficcongestion.However,usingthetraditionalparameterstatisticalmodel,themethodsofnon-real-timeandlong-termtraininghavebecomemoreandmoredifficulttomeettherequirementso

7、fintelligenttrafficsystemsforreal-timetrafficflowinformationacquisitioninnon-stationarystate.Toobtaintrafficflowinformationinrealtimeandprovidetechnicalsupportfortheconstructionofmodernintelligenttrafficsystems,thisthesisstudiesre

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。