k高考一轮考试数学:反函数

k高考一轮考试数学:反函数

ID:34903646

大小:422.50 KB

页数:9页

时间:2019-03-13

k高考一轮考试数学:反函数_第1页
k高考一轮考试数学:反函数_第2页
k高考一轮考试数学:反函数_第3页
k高考一轮考试数学:反函数_第4页
k高考一轮考试数学:反函数_第5页
资源描述:

《k高考一轮考试数学:反函数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、个人收集整理仅供参考学习本文为自本人珍藏版权所有仅供参考2.5反函数●知识梳理1.反函数定义:若函数y=f(x)(x∈A)地值域为C,由这个函数中x、y地关系,用y把x表示出来,得到x=(y).如果对于y在C中地任何一个值,通过x=(y),x在A中都有唯一地值和它对应,那么,x=(y)就表示y是自变量,x是自变量y地函数.这样地函数x=(y)(y∈C)叫做函数y=f(x)(x∈A)地反函数,记作x=f-1(y).b5E2RGbCAP在函数x=f-1(y)中,y表示自变量,x表示函数.习惯上,我们一

2、般用x表示自变量,y表示函数,因此我们常常对调函数x=f-1(y)中地字母x、y,把它改写成y=f-1(x).p1EanqFDPw2.互为反函数地两个函数y=f(x)与y=f-1(x)在同一直角坐标系中地图象关于直线y=x对称.3.求反函数地步骤:(1)解关于x地方程y=f(x),得到x=f-1(y).(2)把第一步得到地式子中地x、y对换位置,得到y=f-1(x).(3)求出并说明反函数地定义域〔即函数y=f(x)地值域〕.●点击双基1.(2005年北京东城区模拟题)函数y=-(x≠-1)地反函

3、数是A.y=--1(x≠0)B.y=-+1(x≠0)C.y=-x+1(x∈R)D.y=-x-1(x∈R)解析:y=-(x≠-1)x+1=-x=-1-.x、y交换位置,得y=-1-.答案:A2.函数y=log2(x+1)+1(x>0)地反函数为A.y=2x-1-1(x>1)B.y=2x-1+1(x>1)C.y=2x+1-1(x>0)D.y=2x+1+1(x>0)解析:函数y=log2(x+1)+1(x>0)地值域为{y

4、y>1},由y=log2(x+1)+1,解得x=2y-1-1.DXDiTa9E3

5、d∴函数y=log2(x+1)+1(x>0)地反函数为y=2x-1-1(x>1).答案:A3.函数f(x)=-(x≥-)地反函数A.在[-,+∞)上为增函数B.在[-,+∞)上为减函数C.在(-∞,0]上为增函数D.在(-∞,0]上为减函数9/9个人收集整理仅供参考学习解析:函数f(x)=-(x≥-)地值域为{y

6、y≤0},而原函数在[-,+∞)上是减函数,所以它地反函数在(-∞,0]上也是减函数.RTCrpUDGiT答案:D4.(2005年春季上海,4)函数f(x)=-x2(x∈(-∞,-2])

7、地反函数f-1(x)=______________.5PCzVD7HxA解析:y=-x2(x≤-2),y≤-4.∴x=-.x、y互换,∴f-1(x)=-(x≤-4).答案:-(x≤-4)5.若函数f(x)=,则f-1()=___________.解法一:由f(x)=,得f-1(x)=.∴f-1()==1.解法二:由=,解得x=1.∴f-1()=1.答案:1评述:显然解法二更简便.●典例剖析【例1】设函数f(x)是函数g(x)=地反函数,则f(4-x2)地单调递增区间为A.[0,+∞)B.(-∞,0

8、]C.[0,2)D.(-2,0]解析:f(4-x2)=-log2(4-x2).x∈(-2,0]时,4-x2单调递增;x∈[0,2)时,4-x2单调递减.jLBHrnAILg答案:C深化拓展1.若y=f(x)是[a,b]上地单调函数,则y=f(x)一定有反函数,且反函数地单调性与y=f(x)一致.xHAQX74J0X2.若y=f(x),x∈[a,b](a<b)是偶函数,则y=f(x)有反函数吗?(答案:无)【例2】求函数f(x)=地反函数.解:当x≤-1时,y=x2+1≥2,且有x=-,此时反函数为

9、y=-(x≥2).当x>-1时,y=-x+1<2,且有x=-y+1,此时反函数为y=-x+1(x<2).9/9个人收集整理仅供参考学习∴f(x)地反函数f-1(x)=评述:分段函数应在各自地条件下分别求反函数式及反函数地定义域,分段函数地反函数也是分段函数.【例3】已知函数f(x)是函数y=-1(x∈R)地反函数,函数g(x)地图象与函数y=地图象关于直线y=x-1成轴对称图形,记F(x)=f(x)+g(x).LDAYtRyKfE(1)求F(x)地解析式及定义域.(2)试问在函数F(x)地图象上是

10、否存在这样两个不同点A、B,使直线AB恰好与y轴垂直?若存在,求出A、B两点坐标;若不存在,说明理由.Zzz6ZB2Ltk解:(1)由y=-1(x∈R),得10x=,x=lg.∴f(x)=lg(-1<x<1).设P(x,y)是g(x)图象上地任意一点,则P关于直线y=x-1地对称点P′地坐标为(1+y,x-1).由题设知点P′(1+y,x-1)在函数y=地图象上,∴x-1=.dvzfvkwMI1∴y=,即g(x)=(x≠-2).∴F(x)=f(x)+g(x)=lg+,其定义域为{x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。