欢迎来到天天文库
浏览记录
ID:34748232
大小:292.79 KB
页数:36页
时间:2019-03-10
《Maximum Likelihood Estimation.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、MaximumLikelihoodEstimationPhDEconometricsWeiTanHanqingAdvancedInstituteofEconomicsandFinanceRenminUniversityofChinaWeiTan(RUC)MaximumLikelihoodEstimation1/36MaximumLikelihoodEstimationIntroductionExamplesFrameworkforconditionalMLEConsistencyandAsymptoticPrope
2、rtyofMLEHypothesistestingWeiTan(RUC)MaximumLikelihoodEstimation2/36MaximumLikelihoodEstimationLinearModelscanbeestimatedwithoutmakingfulldistributionalassumptionsMainlyrelyonzerocovarianceandzeroconditionalmeanassummptions.EstimatesareconsistentWeiTan(RUC)Maxi
3、mumLikelihoodEstimation3/36MaximumLikelihoodEstimationAlternativeapproachistospecifythedistributionofrandomsampleMLEde…nesaclassofestimatorsbasedontheparticulardistributionassumedtohavegeneratedtheobservedrandomvariable.ThemainadvantageofMLestimatorsisthatamon
4、gallConsistentAsymptoticallyNormalEstimators,MLEshaveoptimalasymptoticproperties.Themaindisadvantageisthattheyarenotnecessarilyrobusttofailuresofthedistributionalassumptions.Theyareverydependentontheparticularassumptions.E¢ciencyvsRobustnessTradeo¤MLEprovidesa
5、uni…edapproachtoeconometricsanalysis,linearmodelscanbeviewedasatypeofMLEundercertainassumptions.WeiTan(RUC)MaximumLikelihoodEstimation4/36MaximumLikelihoodEstimationManynonlinearmodelscanbeestimatedbyMLEDiscreteResponseModels,suchasProbit,Logit,MultinomialLogi
6、t,OrderedProbitCensoredRegressionModel,suchasTobitCountDataModels,suchasPoissonandNegativeBinomialDurationModelWeiTan(RUC)MaximumLikelihoodEstimation5/36SetupoftheMLEThedistributionoftheobservedrandomvariableiswrittenasafunctionoftheparameterstobeestimated:P(y
7、ijdata;)=pdfjparametersThelikelihoodfunctionisconstructedfromtheparametricconditionaldensityfunction.Thedistributionofxisnotourinterest,weareonlyinterestedintheconditionaldistributionfunctionWeiTan(RUC)MaximumLikelihoodEstimation6/36probitSupposethatthelatentv
8、ariableyfollows:iy=x+eiiiwhereisavectorofparameters,eiisindependentofxiandei~Normal(0;1)Insteadofobservingthelatentvariabley,weobseverabinaryivariableyiand1ify>0y=ii0ify60i
此文档下载收益归作者所有