Maximum_Likelihood_Estimation.pdf

Maximum_Likelihood_Estimation.pdf

ID:34633804

大小:301.69 KB

页数:12页

时间:2019-03-08

Maximum_Likelihood_Estimation.pdf_第1页
Maximum_Likelihood_Estimation.pdf_第2页
Maximum_Likelihood_Estimation.pdf_第3页
Maximum_Likelihood_Estimation.pdf_第4页
Maximum_Likelihood_Estimation.pdf_第5页
资源描述:

《Maximum_Likelihood_Estimation.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MaximumLikelihoodEstimationBUFN758NProf.SkoulakisBUFN758N(Prof.Skoulakis)MaximumLikelihoodEstimation1/12Example:CoinTossingConsidertossinga(notnecessarilyfair)coinNtimesTheprobabilityoftailsisp=P[T]whiletheprobabilityofheadsisq=P[H]=1pTheparameterofinte

2、restispSupposethatthecoinistossed10timesandweobserve3tailsSupposetherearetwocandidatesfortheparameterptobeconsidered:1and2.Whichoneismorereasonable?33BUFN758N(Prof.Skoulakis)MaximumLikelihoodEstimation2/12Example:CoinTossing(cont'd)Idea:selectthevalueofp

3、underwhichtheobservedoutcomeismorelikely.LetXbethenumberoftailsinNtrials.TherandomvariableXtakesvalues0;1;:::;NandfollowsthebinomialdistributionwithprobabilityfunctionNkNkP[X=k]=p(1p);k=0;:::;N:kInourexample,ifp=1thentheobservedoutcomehas3377

4、probability1012=102.3333310Moreover,ifp=2thentheobservedoutcomehasprobability37331021=102.3333310BUFN758N(Prof.Skoulakis)MaximumLikelihoodEstimation3/12Example:CoinTossing(cont'd)Hence,theobservedoutcomeismorelikelyunderp=1,which3weconcludetobeth

5、emorereasonableselectionforp.But,wedonothavetofocusonjusttwopossibilities.Followingthesamelogic,wecanaskwhatvalueofpmakestheobservedoutcomemostlikely.Inotherwords,whatvalueofpmaximizesL(p)=10p3(1p)7?3Sincethelogarithmicfunctionisstrictlyincreasing,and

6、ignoring10theconstantterm,itsucestomaximize337F(p)=logp(1p)=3log(p)+7log(1p)BUFN758N(Prof.Skoulakis)MaximumLikelihoodEstimation4/12Example:CoinTossing(cont'd)ThederivativeofF(p)is011310pF(p)=37=p1pp(1p)SettingthederivativeF0(p)equalto0,weobtai

7、ntheestimatep^=3.10Ingeneral,ifweobservektailsinNtrialsthentheprobabilityoftheobservedoutcomeisL(p)=Npk(1p)Nk.Tomaximizekthisprobability(likelihood),weneedtomaximizeF(p)=klog(p)+(Nk)log(1p)SettingF0(p)=0,kNp=0,weobtaintheestimator^p=k.p(1p)NBUFN7

8、58N(Prof.Skoulakis)MaximumLikelihoodEstimation5/12MaximumLikelihoodEstimator(MLE)Ingeneral,theprobabilityoftheobserveddata,sayX1;:::;XT,dependsontheunderlyingparameter,say.Thisprobabilityisdenotedbyp(X1;:::;XTj).Viewedas

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签