1 maximum likelihood and bayesian methods for mixtures of normal distributions.

1 maximum likelihood and bayesian methods for mixtures of normal distributions.

ID:33930994

大小:145.51 KB

页数:17页

时间:2019-02-28

1 maximum likelihood and bayesian methods for mixtures of normal distributions._第1页
1 maximum likelihood and bayesian methods for mixtures of normal distributions._第2页
1 maximum likelihood and bayesian methods for mixtures of normal distributions._第3页
1 maximum likelihood and bayesian methods for mixtures of normal distributions._第4页
1 maximum likelihood and bayesian methods for mixtures of normal distributions._第5页
资源描述:

《1 maximum likelihood and bayesian methods for mixtures of normal distributions.》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、MAXIMUMLIKELIHOODANDBAYESIANMETHODSFORMIXTURESOFNORMALDISTRIBUTIONS.PeterM.Saama.UCLAOfficeofAcademicComputing.November,1997.A.ABSTRACTDatawerewaitingtimesbetweeneruptionsoftheOldFaithfulgeyserinYellowstoneNationalPark,Wyoming,USA.Thesamplehistogramshowedevidenceofbimodalit

2、y.Forthwith,atwo-componentnormalmixturemodelwasfittedtothedata.TheGauss-Newtonalgorithmwasusedtoobtainthemaximumlikelihoodestimateofthenuisanceparametersinthemixturemodel.AnalternativemethodwhichusestheGibbsSamplertoobtainparameterestimatesaswellas100(1- FUHGLEOHEDQGVIR

3、UWKHSDUDPHWHUVZDVLPSOHPHQWHGDQGLVSUHVHQWHGB.INTRODUCTIONBecauseofoverdispersionandheterogeneityinthepopulation,amixtureofdistributionsisoftenusedtomodelthequantitativeresponse.Suchdistributionsareoftenconsideredappropriatemodelsforthoughttoconsistofanumberofrelative

4、lydistinctsub-populations(c).Insituationswherethenumberofcomponentsisunknown,mixturedensitiesoftheformk2∑πjN(θj,σj)j=1havefoundtheirwidestapplicationsasamodelbasedclusteringprocedure;πisthejthprobabilitythatobservationycomesfromcomponentjofthemixture.Hereinθ=λ,τ,πiwilldenot

5、ethesetofallunknownparametersandp(..)isusedtodenoteagenericconditionalprobabilitydensityfunction.AmixtureoftwonormaldensitieswasfirstconsideredbyPearsonin1894withparameterestimatesobtainedfromthemethodofmomentsandinvolvedthesolutionofaninth-degreepolynomial.Theseminalpapero

6、ntheEMalgorithm(Dempster,LairdandRubin,1977)hasgreatlystimulatedworkonfinitemixturesofdistributions.Applicationsofmixturemodels1reportedbyTitterington,SmithandMakov(1985)andMcLachlanandBasford(1988)usetheExpectationMaximization(EM)algorithm.Itsdisadvantagesinclude:•extremes

7、lownessofconvergencewhentheproportionofmissingdataishigh;•absenceofstandarderrorsfromtheinformationmatrixatconvergence.CompetitorsofEMareGauss-Newton(Lois,1982;Aitkinetal,1994),FisherScoring(Rao,1948),andDifferentialEvolution(PriceandStorn,1997).TheGauss-Newton(GN)algorithm

8、,isnotguaranteedtoconvergewhenthelog-likelihoodisnotconcavebutwhenitdoesconverge,t

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。