欢迎来到天天文库
浏览记录
ID:34693241
大小:312.00 KB
页数:4页
时间:2019-03-09
《全国高考数学基础知识总结:五平面向量》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、§05.平面向量知识要点1.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法;字母表示:a;坐标表示法a=xi+yj=(x,y).(3)向量的长度:即向量的大小,记作|a|.(4)特殊的向量:零向量a=O|a|=O.单位向量aO为单位向量|aO|=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)(6)相反向量:a=-bb=-aa+b=0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量.矚慫润厲钐瘗睞枥庑赖。2.向量的运算运算类型几何方法坐标方法运算性质向量
2、的加法1.平行四边形法则2.三角形法则向量的减法三角形法则,数乘向量1.是一个向量,满足:2.>0时,同向;<0时,异向;=0时,.向量的数量积是一个数1.时,.2.3.重要定理、公式(1)平面向量基本定理:e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a=λ1e1+λ2e2.聞創沟燴鐺險爱氇谴净。(2)两个向量平行的充要条件:a∥ba=λb(b≠0)x1y2-x2y1=O.(3)两个向量垂直的充要条件:a⊥ba·b=Ox1x2+y1y2=O.(4)线段的定比分点公式:设点P分有向线段所成的比为λ,即=λ,则
3、=+(线段的定比分点的向量公式)(线段定比分点的坐标公式)当λ=1时,得中点公式:=(+)或(5)平移公式:设点P(x,y)按向量a=(h,k)平移后得到点P′(x′,y′),则=+a或曲线y=f(x)按向量a=(h,k)平移后所得的曲线的函数解析式为:y-k=f(x-h)空间向量1.空间向量的概念:具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量⑶空间的两个向量可用同一平面内的两条有向线段来表示2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下运算律:⑴加法
4、交换律:⑵加法结合律:⑶数乘分配律:3共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.平行于记作.当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线.4.共线向量定理及其推论:共线向量定理:空间任意两个向量、(≠),//的充要条件是存在实数λ,使=λ.推论:如果为经过已知点A且平行于已知非零向量的直线,那么对于任意一点O,点P在直线上的充要条件是存在实数t满足等式残骛楼諍锩瀨濟溆塹籟。.其中向量叫做直线的方向向量.5.向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向
5、量平行于平面,记作:.通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的6.共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使推论:空间一点位于平面内的充分必要条件是存在有序实数对,使或对空间任一点,有①①式叫做平面的向量表达式7空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使8空间向量的夹角及其表示:已知两非零向量,在空间任取一点,作,则叫做向量与的夹角,记作;且规定,显然有;若,则称与互相垂直,记作:.酽锕极額閉镇桧猪
6、訣锥。9.向量的模:设,则有向线段的长度叫做向量的长度或模,记作:.10.向量的数量积:.已知向量和轴,是上与同方向的单位向量,作点在上的射影,作点在上的射影,则叫做向量在轴上或在上的正射影.彈贸摄尔霁毙攬砖卤庑。可以证明的长度.11.空间向量数量积的性质:(1).(2).(3).12.空间向量数量积运算律:(1).(2)(交换律)(3)(分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(对应为纵轴),z轴是竖轴(对应为竖坐标).謀荞抟箧飆鐸怼类蒋薔。①令=(a1,a2,a3),,则∥(用到常用的向
7、量模与向量之间的转化:)②空间两点的距离公式:.(2)法向量:若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果那么向量叫做平面的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB是平面的一条射线,其中,则点B到平面的距离为.厦礴恳蹒骈時盡继價骚。②利用法向量求二面角的平面角定理:设分别是二面角中平面的法向量,则所成的角就是所求二面角的平面角或其补角大小(方向相同,则为补角,反方,则为其夹角).茕桢广鳓鯡选块网羈泪。③证直线和平面平行定理:已知直线平面,,且CDE三点不共线,则a∥的充要条件是存在
此文档下载收益归作者所有