欢迎来到天天文库
浏览记录
ID:34665063
大小:936.00 KB
页数:33页
时间:2019-03-08
《二次函数和圆练习(附标准答案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、二次函数和圆一.解答题(共15小题)1.(2012•宜昌)如图,在平面直角坐标系中,直线y=x+1分别与两坐标轴交于B,A两点,C为该直线上的一动点,以每秒1个单位长度的速度从点A开始沿直线BA向上移动,作等边△CDE,点D和点E都在x轴上,以点C为顶点的抛物线y=a(x﹣m)2+n经过点E.⊙M与x轴、直线AB都相切,其半径为3(1﹣)a.矚慫润厲钐瘗睞枥庑赖。(1)求点A的坐标和∠ABO的度数;(2)当点C与点A重合时,求a的值;(3)点C移动多少秒时,等边△CDE的边CE第一次与⊙M相切?考
2、点:二次函数综合题.专题:代数几何综合题;压轴题;动点型;数形结合.分析:(1)已知直线AB的解析式,令解析式的x=0,能得到A点坐标;令y=0,能得到B点坐标;在Rt△OAB中,知道OA、OB的长,用正切函数即可得到∠ABO的读数.(2)当C、A重合时,就告诉了点C的坐标,然后结合OC的长以及等边三角形的特性求出OD、OE的长,即可得到D、E的坐标,利用待定系数即可确定a的值.(3)此题需要结合图形来解,首先画出第一次相切时的示意图(详见解答图);已知的条件只有圆的半径,那么先连接圆心与三个切点
3、以及点E,首先能判断出四边形CPMN是正方形,那么CP与⊙M的半径相等,只要再求出PE就能进一步求得C点坐标;那么可以从PE=EQ,即Rt△MEP入手,首先∠CED=60°,而∠MEP=∠MEQ,易求得这两个角的度数,通过解直角三角形不难得到PE的长,即可求出PE及点C、E的坐标.然后利用C、E的坐标确定a的值,进而可求出AC的长,由此得解.解答:解:(1)当x=0时,y=1;当y=0时,x=﹣,∴OA=1,OB=,∴=∴A的坐标是(0,1)∠ABO=30°.(2)∵△CDE为等边△,点A(0,1
4、),∴tan30°=,∴,∴D的坐标是(﹣,0),E的坐标是(,0),把点A(0,1),D(﹣,0),E(,0)代入y=a(x﹣m)2+n,解得:a=﹣3.(3)如图,设切点分别是Q,N,P,连接MQ,MN,MP,ME,过点C作CH⊥x轴,H为垂足,过A作AF⊥CH,F为垂足.∵△CDE是等边三角形,∠ABO=30°∴∠BCE=90°,∠ECN=90°∵CE,AB分别与⊙M相切,∴∠MPC=∠CNM=90°,∴四边形MPCN为矩形,∵MP=MN∴四边形MPCN为正方形∴MP=MN=CP=CN=3(
5、1﹣)a(a<0).∵EC和x轴都与⊙M相切,∴EP=EQ.∵∠NBQ+∠NMQ=180°,∴∠PMQ=60°∴∠EMQ=30°,∴在Rt△MEP中,tan30°=,∴PE=(﹣3)a∴CE=CP+PE=3(1﹣)a+(﹣3)a=﹣2a∴DH=HE=﹣a,CH=﹣3a,BH=﹣3a,∴OH=﹣3a﹣,OE=﹣4a﹣∴E(﹣4a﹣,0)∴C(﹣3a﹣,﹣3a)设二次函数的解析式为:y=a(x+3a+)2﹣3a∵E在该抛物线上∴a(﹣4a﹣+3a+)2﹣3a=0得:a2=1,解之得a1=1,a2=﹣1
6、∵a<0,∴a=﹣1∴AF=2,CF=2,∴AC=4∴点C移动到4秒时,等边△CDE的边CE第一次与⊙M相切.点评:这道二次函数综合题目涉及的知识点较多,有:待定系数法确定函数解析式、等边三角形的性质、切线长定理等重点知识.难度在于涉及到动点问题,许多数值都不是具体值;(3)题中,正确画出草图、贯彻数形结合的解题思想是关键.2.(2012•盐城)在平面直角坐标系xOy中,已知二次函数y=的图象经过点A(2,0)和点B(1,﹣),直线l经过抛物线的顶点且与t轴垂直,垂足为Q.聞創沟燴鐺險爱氇谴净。(
7、1)求该二次函数的表达式;(2)设抛物线上有一动点P从点B处出发沿抛物线向上运动,其纵坐标y1随时间t(t≥0)的变化规律为y1=﹣+2t.现以线段OP为直径作⊙C.残骛楼諍锩瀨濟溆塹籟。①当点P在起始位置点B处时,试判断直线l与⊙C的位置关系,并说明理由;在点P运动的过程中,直线l与⊙C是否始终保持这种位置关系?请说明你的理由.酽锕极額閉镇桧猪訣锥。②若在点P开始运动的同时,直线l也向上平行移动,且垂足Q的纵坐标y2随时间t的变化规律为y2=﹣1+3t,则当t在什么范围内变化时,直线l与⊙C相交
8、?此时,若直线l被⊙C所截得的弦长为a,试求a2的最大值.彈贸摄尔霁毙攬砖卤庑。考点:二次函数综合题.专题:压轴题;动点型.分析:(1)所求函数的解析式中有两个待定系数,直接将A、B两点坐标代入即可得解.(2)①由于OP是⊙C的直径,根据P点的纵坐标可表示出C点的纵坐标,进而能表示出C到直线l的距离;OP长易得,然后通过比较⊙C的半径和C到直线l的距离,即可判定直线l与⊙C的位置关系.②该题要分两问来答,首先看第一问;该小题的思路和①完全一致,唯一不同的地方:要注意直线l与点C的位
此文档下载收益归作者所有