quantum cohomology and $s^1$-actions with isolated fixed points

quantum cohomology and $s^1$-actions with isolated fixed points

ID:34659487

大小:291.00 KB

页数:20页

时间:2019-03-08

quantum cohomology and $s^1$-actions with isolated fixed points_第1页
quantum cohomology and $s^1$-actions with isolated fixed points_第2页
quantum cohomology and $s^1$-actions with isolated fixed points_第3页
quantum cohomology and $s^1$-actions with isolated fixed points_第4页
quantum cohomology and $s^1$-actions with isolated fixed points_第5页
资源描述:

《quantum cohomology and $s^1$-actions with isolated fixed points》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、QUANTUMCOHOMOLOGYANDS1-ACTIONSWITHISOLATEDFIXEDPOINTSEDUARDOGONZALEZAbstract.Thispaperstudiessymplecticmanifoldsthatadmitsemi-freecir-cleactionswithisolatedfixedpoints.Weprove,usingresultsontheSeidelelement[4],thatthe(small)quantumcohomologyofa2ndimensiona

2、lmani-foldofthistypeisisomorphictothe(small)quantumcohomologyofaproductofncopiesofP1.ThisgeneralizesaresultduetoTolmanandWitsman[11].1.IntroductionLet(M,ω)bea2ndimensionalcompact,connected,symplecticmanifold,andlet{λ}=λ:S1−→Symp(M,ω)beasymplecticcircleact

3、iononM,thatis,iftXisthevectorfieldgeneratingtheaction,thenLXω=dιXω=0.Recallthatthe1actionissemi-freeifitisfreeonMMS.Thisisequivalenttosaythattheonlyweightsateveryfixedpointare±1.AcircleactionissaidtobeHamiltonianifthereisaC∞functionH:M−→Rsuchthatιω=−dH.Suc

4、hafunctionisXcalledaHamiltonianfortheaction.TolmanandWeitsmanprovedin[11]thatiftheactionissemi-freeandadmitsonlyisolatedfixedpoints,thentheactionmustbeHamiltonianprovidedthatthereisatleastonefixedpoint.Thereisagreatdealofinformationconcerningthetopologyofma

5、nifoldscarryingsuchactions.ThefirstresultinthisdirectionisduetoHattori[2].HeprovesthatthereisanisomorphismfromthecohomologyringH∗(M;Z)tothecohomologyringofaproductofncopiesofP1.Moreover,thisisomorphismpreservesChernclasses.In[11]TolmanandWeitsmangeneralize

6、Hattori’sresulttoequivariantcohomology.Themainresultofthispaperistoextendthisresulttoquantumcohomology.In§3.1weprovethatMisalmostFanomanifold,thereforewecanusepolynomialcoefficientsΛ:=Q[q1,...,qn]forthequantumcohomologyring.Themaintheoremisthefollowing.arXi

7、v:math/0310114v1[math.SG]8Oct2003Theorem1.1.Let(M,ω)bea2n-dimensionalcompactconnectedsymplecticman-ifold.AssumeMadmitsasemi-freecircleactionwithafinitenon-emptysetoffixedpoints.Thenthereisanisomorphismof(small)quantumcohomologyQH∗(M;Λ)∼=QH∗((P1)n;Λ).Notetha

8、twecancomputedirectlythequantumcohomologyofP1×···×P1togetthefollowingresult.Corollary1.2.The(small)quantumcohomologyofMisgivenby∗∗1nQ[x1,...,xn,q1,...,qn]QH(M;Λ)∼=QH((P);Λ)∼=Date:October,2003.partialsuppor

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。