资源描述:
《yang and parvin high-resolution reconstruction of sparse data from dense low-resolution spa》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、YANGANDPARVIN:HIGH-RESOLUTIONRECONSTRUCTIONOFSPARSEDATAFROMDENSELOW-RESOLUTIONSPATIO-TEMPORALDATA1High-ResolutionReconstructionofSparseDatafromDenseLow-ResolutionSpatio-TemporalDataQingYangandBahramParvin,SeniorMember,IEEEAbstract—Anovelapproachforreconstructionofsparsehigh-2)Compu
2、tingfeaturevelocitiesofdensespatio-temporalresolutiondatafromlower-resolutiondensespatio-temporaldataimagesfromlow-resolution18kmdata.isintroduced.Thebasicideaistocomputethedensefeature3)Projectingcomputedfeaturevelocitiesonto4kmdatavelocitiesfromlower-resolutiondataandprojectthemt
3、otheandsolvingtheflowequationforintensityasopposedcorrespondinghigh-resolutiondataforcomputingthemissingdata.Inthiscontext,thebasicflowequationissolvedforintensity,tovelocities.asopposedtofeaturevelocitiesathighresolution.AlthoughtheCurrentmethodsforinterpolatingSSTdataarebasedonprop
4、osedtechniqueisgeneric,wehaveappliedourapproachobjectiveanalysis(OA)[1]andoptimalinterpolation(OI)toseasurfacetemperature(SST)dataat18km(low-resolutiondensedata)forcomputingthefeaturevelocitiesandat4km[2]asaspecialcase.Thesetechniquesoperateonrandomly(high-resolutionsparsedata)fori
5、nterpolatingthemissingdata.distributedspatio-temporaldata,andtheyhavebeenshownAtlowresolution,computationoftheflowfieldisregularizedandtobereliableupto18kmresolution,e.g.,agridsizeofusestheincompressibilityconstraintsfortrackingfluidmotion.ÆAthighresolution,computationoftheintensityis
6、regularized0:25withanimagesizeof7201440.However,duetotheextremelyhighcomputationalcomplexityofthesemethods,forcontinuityacrossmultipleframes.interpolatingSSTdataathighresolution,e.g.,agridsizeofIndexTerms—Highresolution,interpolation,motion,duality,Æmultigridmethods(0:04395withani
7、magesizeof40968192,remainsanopenproblem.Weproposetosolvethisproblembyintegratingtwodifferentsourcesofinformation:motionandtemperature.InI.INTRODUCTIONtheproposedmodel,wecanincorporateflow,temperature,Thispaperpresentsanovelapproachforreconstructionincompressibilityandsmoothnesstoge
8、ther.Asweshallsee,ofhigh-r