【数学】高考二轮作业数学学案导数及其应用

【数学】高考二轮作业数学学案导数及其应用

ID:34645905

大小:588.00 KB

页数:7页

时间:2019-03-08

【数学】高考二轮作业数学学案导数及其应用_第1页
【数学】高考二轮作业数学学案导数及其应用_第2页
【数学】高考二轮作业数学学案导数及其应用_第3页
【数学】高考二轮作业数学学案导数及其应用_第4页
【数学】高考二轮作业数学学案导数及其应用_第5页
资源描述:

《【数学】高考二轮作业数学学案导数及其应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、导数及其应用【学法导航】导数是高中数学中较为重要的知识,由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具。导数的概念及其运算是导数应用的基础,是高考重点考查的对象。要牢记导数公式,熟练应用导数公式求函数的导数,掌握求导数的方法。导数的应用是高考考查的重点和难点,题型既有灵活多变的客观性试题,又有具有一定能力要求的主观性试题,这要求我们复习时要掌握基本题型的解法,树立利用导数处理问题的意识.矚慫润厲钐瘗睞枥庑赖。所以在复习中要重点把握以下几点:一是导数的

2、概念及其运算是导数应用的基础,这是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义;二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题.三是应用导数解决实际问题.聞創沟燴鐺險爱氇谴净。【专题综合】导数是高中数学知识的一个重要的交汇点,命题范围非常广泛,为高考考查函数提供了广阔天地,处于一种特殊的地位,高考命题在利用导数工具研究函数的有关性质,把导数应用于单调性、极值等传统、常规问题的同时,进一步

3、升华到处理与自然数有关的不等式的证明,是函数知识和不等式知识的一个结合体,它的解题又融合了转化、分类讨论、函数与方程、数形结合等数学思想与方法,突出了对能力的考查.残骛楼諍锩瀨濟溆塹籟。1.利用导数处理方程问题例1(2009江西卷文)设函数.(1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围.解:(1),因为,,即恒成立,所以,得,即的最大值为(2)因为当时,;当时,;当时,;所以当时,取极大值;当时,取极小值;故当或时,方程仅有一个实根.解得或.2利用导数研究函数

4、的图像变化规律77例3(2009陕西卷文)已知函数求的单调区间;若在处取得极值,直线y=m与的图象有三个不同的交点,求m的取值范围。解析:(1)当时,对,有当时,的单调增区间为当时,由解得或;由解得,当时,的单调增区间为;的单调减区间为。(2)因为在处取得极大值,所以所以由解得由(1)中的单调性可知,在处取得极大值,在处取得极小值因为直线与函数的图象有三个不同的交点,又,,结合的单调性可知,的取值范围是3.利用导数证明不等式例3(2007年山东卷理)设函数,其中.(I)当时,判断函数在定义域上的单

5、调性;77(II)求函数的极值点;(III)证明对任意的正整数,不等式都成立.解:(I)函数的定义域为.,令,则在上递增,在上递减,.当时,,在上恒成立.即当时,函数在定义域上单调递增。(II)分以下几种情形讨论:(1)由(I)知当时函数无极值点.(2)当时,,时,时,时,函数在上无极值点。(3)当时,解得两个不同解,.当时,,,此时在上有唯一的极小值点.当时,77在都大于0,在上小于0,此时有一个极大值点和一个极小值点.综上可知,时,在上有唯一的极小值点;时,有一个极大值点和一个极小值点;时,函

6、数在上无极值点(III)当时,令则在上恒正,在上单调递增,当时,恒有.即当时,有,对任意正整数,取得点评:函数的单调性、导数的应用、不等式的证明方法。(I)通过判断导函数的正负来确定函数的单调性是是和定义域共同作用的结果;(II)需要分类讨论,由(I)可知分类的标准为(III)构造新函数为证明不等式“服务”,构造函数的依据是不等式关系中隐含的易于判断的函数关系。用导数解决函数的单调性问题一直是各省市高考及各地市高考模拟试题的重点,究其原因,应该有三条:这里是知识的交汇处,这里是导数的主阵地,这里是

7、思维的制高点.此类问题的一般步骤都能掌握,但重要的是求导后的细节问题------参数的取值范围是否影响了函数的单调性?因而需要进行分类讨论判断:当参数给出了明确的取值范围后,应根据导函数的特点迅速判断或。参数取某些特定值时,可直观作出判断,单列为一类;不能作出直观判断的,再分为一类,用通法解决.另外要注意由求得的根不一定就是极值点,需要判断在该点两侧的异号性后才能称为“极值点”.酽锕极額閉镇桧猪訣锥。77例4已知函数,,证明:证:函数的定义域为.=-1=-当x∈(-1,0)时,>0,当x∈(0,+

8、∞)时,<0,因此,当时,≤,即≤0∴.令则=.∴当x∈(-1,0)时,<0,当x∈(0,+∞)时,>0.∴当时,≥,即≥0,∴.综上可知,当时,有.通过以上例题,我们可以体会到用导数来证明不等式的基本要领和它的简捷。总之,利用导数证明不等式的关键是“构造函数”,解决问题的依据是函数的单调性,这一方法在高等数学中应用的非常广泛,因此,希望同学门能认真对待,并通过适当的练习掌握它彈贸摄尔霁毙攬砖卤庑。【专题突破】1、.以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。