neural networks for applied sciences and engineering (2006)

neural networks for applied sciences and engineering (2006)

ID:34631511

大小:5.86 MB

页数:581页

时间:2019-03-08

neural networks for applied sciences and engineering (2006)_第1页
neural networks for applied sciences and engineering (2006)_第2页
neural networks for applied sciences and engineering (2006)_第3页
neural networks for applied sciences and engineering (2006)_第4页
neural networks for applied sciences and engineering (2006)_第5页
资源描述:

《neural networks for applied sciences and engineering (2006)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、q2006byTaylor&FrancisGroup,LLCq2006byTaylor&FrancisGroup,LLCq2006byTaylor&FrancisGroup,LLCq2006byTaylor&FrancisGroup,LLCDedicationToDonMyhusbandForyourconstantlove,support,andencouragementTodothebestIcandoinallMyendeavorsasaWomanandaScholar!q2006byTaylor&FrancisGroup,LLCq2006byT

2、aylor&FrancisGroup,LLCContentsPreface......................................................................................................xviiAcknowledgments.....................................................................................xxiAbouttheAuthor...................

3、.................................................................xxiii1FromDatatoModels:ComplexityandChallengesinUnderstandingBiological,Ecological,andNaturalSystems.................................................................................11.1:Introduction11.2:Layoutofthe

4、Book4References72FundamentalsofNeuralNetworksandModelsforLinearDataAnalysis................................................................112.1:IntroductionandOverview112.2:NeuralNetworksandTheirCapabilities122.3:InspirationsfromBiology162.4:ModelingInformationProcessinginNeuro

5、ns182.5:NeuronModelsandLearningStrategies192.5.1:ThresholdNeuronasaSimpleClassifier202.5.2:LearningModelsforNeuronsandNeuralAssemblies232.5.2.1:HebbianLearning232.5.2.2:UnsupervisedorCompetitiveLearning262.5.2.3:SupervisedLearning262.5.3:PerceptronwithSupervisedLearningasaClassifi

6、er272.5.3.1:PerceptronLearningAlgorithm282.5.3.2:APracticalExampleofPerceptrononaLargerRealisticDataSet:IdentifyingtheOriginofFishfromtheGrowth-RingDiameterofScales352.5.3.3:ComparisonofPerceptronwithLinearDiscriminantFunctionAnalysisinStatistics38q2006byTaylor&FrancisGroup,LLCv

7、iii&2.5.3.4:Multi-OutputPerceptronforMulticategoryClassification402.5.3.5:Higher-DimensionalClassificationUsingPerceptron452.5.3.6:PerceptronSummary452.5.4:LinearNeuronforLinearClassificationandPrediction462.5.4.1:LearningwiththeDeltaRule472.5.4.2:LinearNeuronasaClassifier512.5.4.3:

8、ClassificationPropertiesofaLinearNeuronasaSubset

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。