欢迎来到天天文库
浏览记录
ID:34630063
大小:3.85 MB
页数:20页
时间:2019-03-08
《河北省衡水中学2019届高三上学期五调考试数学(文)---精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、河北省衡水中学2019届高三上学期五调考试数学(文)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,,则()A.B.C.D.【答案】A【解析】【分析】求出集合B对应不等式的解集,然后求其与集合A的交集即可.【详解】因为,又,所以.故选A.【点睛】本题主要考查交集的运算,属于基础题型.2.满足(是虚数单位)的复数()A.B.C.D.【答案】A【解析】【分析】将原式子变形为,再由复数的除法运算得到结果.【详解】∵,∴,即,故选A.【点睛】这个题
2、目考查了复数的除法运算,复数的常考内容有:z=a+bi(a,b∈R)与复平面上的点Z(a,b)、平面向量都可建立一一对应的关系(其中O是坐标原点);复平面内,实轴上的点都表示实数;虚轴上的点除原点外都表示纯虚数.涉及到共轭复数的概念,一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数z的共轭复数记作.3.已知等差数列的公差为,若,,成等比数列,则等于().A.B.C.D.【答案】D【解析】分析:利用等差数列{an}的公差为2,a1,a3,a4成等比数列,求出a1,即可求出a2详解:
3、:∵等差数列{an}的公差为2,a1,a3,a4成等比数列,∴(a1+4)2=a1(a1+6),∴a1=-8,∴a2=-6.故选D.点睛:本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,比较基础.4.某教育局为了解“跑团”每月跑步的平均里程,收集并整理了2017年1月至2017年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月
4、D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳【答案】D【解析】由折线图知,月跑步平均里程的中位数为5月份对应的里程数;月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9,l0月份,故A,B,C错.本题选择D选项.5.在直角坐标系xOy中,角α的始边为x轴的非负半轴,其终边上的一点P的坐标为(其中),则A.B.C.D.【答案】C【解析】【分析】根据三角函数的定义,求得,再由余弦的倍角公式,即可求解.【详解】由题意,可知角中终边上一点的坐标为且,则,所以,又由,故选C.【点睛】
5、本题主要考查了三角函数的化简求值问题,其中解答中根据三角函数的定义,求得的值,再由余弦的倍角公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.6.已知双曲线的左、右焦点分别为,过作圆的切线,交双曲线右支于点,若,则双曲线的渐近线方程为()A.B.C.D.【答案】A【解析】【分析】作OA⊥于点A,于点B,可得,,,结合双曲线定义可得从而得到双曲线的渐近线方程.【详解】如图,作OA⊥于点A,于点B,∵与圆相切,∴,,又点M在双曲线上,∴整理,得,∴∴双曲线的渐近线方程为故选:A【点睛】本题考查了双曲线渐近
6、线方程的求法,解题关键建立关于a,b的方程,充分利用平面几何性质,属于中档题.7.某几何体的三视图如图所示,数量单位为,它的体积是()A.B.C.D.【答案】C【解析】【分析】由三视图,可知几何体为底面为直角梯形的四棱锥,根据棱锥的体积公式即可求出结果.【详解】如图所示,三视图还原成直观图为底面为直角梯形的四棱锥,故选C.【点睛】本题考查由三视图求几何体体积,解答此类问题的关键是判断几何体的形状及几何尺寸.8.如图,已知三棱柱的各条棱长都相等,且底面,是侧棱的中点,则异面直线和所成的角为( )A.B.C.D.
7、【答案】A【解析】【分析】由题意设棱长为a,补正三棱柱ABC-A2B2C2,构造直角三角形A2BM,解直角三角形求出BM,利用勾股定理求出A2M,从而求解.【详解】设棱长为a,补正三棱柱ABC-A2B2C2(如图).平移AB1至A2B,连接A2M,∠MBA2即为AB1与BM所成的角,在△A2BM中,.故选:A.【点睛】本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.9.在等腰直角三角形中,,点为所在平面上一动点,且满足,求的取值范围A.B.C.D.【答案】D【解析】【分析】建立平面
8、直角坐标系,用坐标表示向量,用参数方程表示点P的坐标,从而求出的取值范围.【详解】根据题意,建立平面直角坐标系,如图所示则A(0,2),B(2,0),C(0,0),由
9、
10、=1知,点P在以B为圆心,半径为1的圆上,设P(2+cosθ,sinθ),θ∈[0,2π);则=(cosθ,sinθ),又+=(2,2);∴•(+)=2cosθ+2sinθ=2sin(θ+),当θ+=,即θ=时,•(+
此文档下载收益归作者所有