资源描述:
《travelling waves solutions to the k-p-p equation at the critical wave speed continuing simo》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、TravellingwavessolutionstotheK-P-Pequationatthecriticalwavespeed:continuingSimonHarris'probabilisticanalysisA.E.KyprianouApril18,2000AbstractRecentlyHarris(1999),usingprobabilisticargumentsalone,hasgivennewproofsofthe(known)existence,asymptoticsandunique-nessoftravellingwavesolutionstothe
2、K-P-Pequation.ThispaperisasequeltoKyprianou(2000b)whichprovidesalternativeprobabilisticargumentsforsupercriticalwavespeeds.Wecompleteourprobabilis-ticanalysishereforthemoredicultcaseofcriticalwavespeeds.Theanalysisiscenteredaroundthestudyofadditiveandmultiplicativemartingalesandtheconstru
3、ctionofsize-biasedmeasuresonaspaceofnon-homogenousmarkedtreesgeneratedbyatruncatedbranchingBrownianmotion.Aspartofourresults,wealsoobtainamarti-naleconvergencetheoremforthederivativeoftheadditivemartin-gale.SomeofthemainideasareinspiredbythetechniquesfoundinKyprianouandBiggins(2000)andLyon
4、s(1997).Thevalueofthesenewprobabilisticproofsistheirgenericnaturewhichinprinciplecanbegeneralizedtostudyothertypesofspatialbranchingdiusionsandassociatedtravellingwaves.Keywordsandphrases.BranchingBrownianMotion,K-P-Pequa-tion,Travellingwavesolutions,AdditiveMartingales,DerivativeMar-ting
5、ales,MultiplicativeMartingales,ConditionedBrownianMotion,Bessel-3Processes.AMS1991subjectclassication.Primary60J80.DepartmentofMathematics,TheUniversityofUtrecht,Budapestlaan6,3584CDUtrecht,TheNetherlands.Email:kyprianou@math.uu.nl11IntroductionAbranchingBrownianmotionisconstructedasfoll
6、ows.Aninitialancestorbeginsitsexistenceattheoriginofone-dimensionalEuclideanspaceandtime.ThisindividualisimmortalandmovesaccordingtoanindependentcopyofstandardBrownianmotionB.Theinitialancestorproducesaran-domnumberofospring,X;attimeswhichformaPoissonprocess,n;withrate>0.Weshallassumethat
7、Xhasdistribution(p:k0)suchkPthatm:=kp<1.Startingfromtheirpointofcreationonthekk0pathoftheirparent,eachofthesechildrenmovesandreproducesaccord-ingtoanindependentcopyofthetriple(B;n;X).LetZbethepointtprocessdescribingthenumberandpositionsofindividualsaliveatti