Dirichlet_boundary_stabilization_of_the_wave_equation.1

Dirichlet_boundary_stabilization_of_the_wave_equation.1

ID:40058535

大小:122.51 KB

页数:15页

时间:2019-07-18

Dirichlet_boundary_stabilization_of_the_wave_equation.1_第1页
Dirichlet_boundary_stabilization_of_the_wave_equation.1_第2页
Dirichlet_boundary_stabilization_of_the_wave_equation.1_第3页
Dirichlet_boundary_stabilization_of_the_wave_equation.1_第4页
Dirichlet_boundary_stabilization_of_the_wave_equation.1_第5页
资源描述:

《Dirichlet_boundary_stabilization_of_the_wave_equation.1》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AsymptoticAnalysis30(2002)117130117IOSPressDirichletboundarystabilizationofthewaveequationKaisAmmariInstitutÉlieCartan,DépartementdeMathématiques,UniversitédeNancyI,F-54506Vandoeuvre-lès-Nancycedex,FranceE-mail:ammari@iecn.u-nancy.frAbstract.Weconsiderthestabilizationproblemf

2、orawaveequation.Inthecasewhenthegeometriccontrolassumption,see[3],isnotsatisfied,weprovethattheenergyofsystemdecaywithalogarithmicrateforallinitialdatainthedomainoftheinfinitesimalgeneratorofevolutionequation.Thetechniqueusedconsistsindeducingthedecayestimatefromanobservability

3、inequalityfortheassociatedundampedproblem,viasharpregularityresults.Keywords:boundarystabilization,Dirichlettypeboundaryfeedback,waveequation1.IntroductionandmainresultsLetΩ⊂Rn,n2,beanopenboundeddomainwithasufficientlysmoothboundary∂Ω=Γ0∪Γ1,whereΓ0,Γ1aredisjointpartsoftheboun

4、daryrelativelyopenin∂Ω,int(Γ0)=∅.Weconsiderthewaveequation:∂2u−Du=0,Ω×(0,+∞),(1.1)∂t2∂u=Gu,Γ×(0,+∞),(1.2)0∂νu=0,Γ1×(0,+∞),(1.3)0∂u1u(x,0)=u(x),(x,0)=u(x),Ω,(1.4)∂twhereνistheunitnormalvectorof∂ΩpointingtowardstheexteriorofΩandG=(−D)−1:H−1(Ω)→H01(Ω).Theproblem(1.1)(1.4)isw

5、ell-posedinL2(Ω)×H−1(Ω),i.e.,forall(u0,u1)∈L2(Ω)×H−1(Ω),Eqs(1.1)(1.4)admitsauniquesolutionu∈C[0,∞);L2(Ω)∩C1[0,∞);H−1(Ω).Moreover,ifwemultiplied1.1byG(∂u/∂t)weobtainthefollowingenergyestimate:2012∂uu,uL2(Ω)×H−1(Ω)−u(t),∂t(t)L2(Ω)×H−1(Ω)t2∂[G(∂u/∂s)]=2

6、(x,s)dΓ0ds,∀t>0.(1.5)0Γ0∂ν0921-7134/02/$8.00Ó2002IOSPress.Allrightsreserved118K.Ammari/DirichletboundarystabilizationofthewaveequationLetφbethesolutionofthefollowingproblem:∂2φ−Dφ=0,Ω×(0,∞),(1.6)∂t2φ=0,∂Ω×(0,∞),(1.7)0∂φ1φ(x,0)=φ(x),(x,0)=φ(x),Ω.(1.8)∂tDenote0IAd=,D0with

7、D(A)=(u,v)∈L2(Ω)×H−1(Ω)

8、(v,Du)∈L2(Ω)×H−1(Ω),d2∂[Gv]u

9、∂Ω∈L(∂Ω),u

10、Γ0=,u

11、Γ1=0.∂νIf(u,v)∈D(Ad)wedenote222(u,v)D(A)=(u,v)L2(Ω)×H−1(Ω)+(v,Du)L2(Ω)×H−1(Ω).dThefollowingholds:Proposition1.1.SupposethatthereexistsT0>0suchthatthesolutionφof(1.6)(1.8)satisfyforallT>T0T

12、2∂φ012dΓ0dtCφ,φH1(Ω)×L2(Ω),(1.9)0Γ0∂ν0whereCisapositivec

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签