The Wright functions as solutions of the time-fractional diffusion equation

The Wright functions as solutions of the time-fractional diffusion equation

ID:39223988

大小:184.04 KB

页数:12页

时间:2019-06-28

The Wright functions as solutions of the time-fractional diffusion equation_第1页
The Wright functions as solutions of the time-fractional diffusion equation_第2页
The Wright functions as solutions of the time-fractional diffusion equation_第3页
The Wright functions as solutions of the time-fractional diffusion equation_第4页
The Wright functions as solutions of the time-fractional diffusion equation_第5页
资源描述:

《The Wright functions as solutions of the time-fractional diffusion equation》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AppliedMathematicsandComputation141(2003)51–62www.elsevier.com/locate/amcTheWrightfunctionsassolutionsofthetime-fractionaldiffusionequationa,*bFrancescoMainardi,GianniPagniniaDipartimentodiFisica,UniversitadiBolognaandINFN,SezionediBologna,ViaIrnerio46,I-40126Bo

2、logna,ItalybIstitutoperleScienzedell’AtmosferaedelClimadelCNR,ViaGobetti101,I-40129Bologna,ItalyAbstractWerevisittheCauchyproblemforthetime-fractionaldiffusionequation,whichisobtainedfromthestandarddiffusionequationbyreplacingthefirst-ordertimederiv-ativewithafract

3、ionalderivativeoforderb2ð0;2.ByusingtheFourier–Laplacetransformsthefundamentalssolutions(Greenfunctions)areshowntobehightran-scendentalfunctionsoftheWright-typethatcanbeinterpretedasspatialprobabilitydensityfunctionsevolvingintimewithsimilarityproperties.Weprovi

4、deageneralrepresentationofthesefunctionsintermsofMellin–Barnesintegralsusefulfornu-mericalcomputation.Ó2002ElsevierScienceInc.Allrightsreserved.Keywords:Fractionalderivatives;Laplacetransforms;Fouriertransforms;Mellin–Barnesinte-grals;Mittag–Lefflerfunctions;Wrigh

5、tfunctions;FoxH-functions1.IntroductionTime-fractionaldiffusionequations,obtainedfromthestandarddiffusionequationbyreplacingthefirst-ordertimederivativebyafractionalderivative(oforder0

6、ofauthors,see,e.g.thereviewsin[1,13,19],andreferencestherein.Inthispaperweintendtoprovidemoreinsightsforthe*Correspondingauthor.E-mailaddress:mainardi@bo.infn.it(F.Mainardi).0096-3003/02/$-seefrontmatterÓ2002ElsevierScienceInc.Allrightsreserved.doi:10.1016/S0096

7、-3003(02)00320-X52F.Mainardi,G.Pagnini/Appl.Math.Comput.141(2003)51–62fundamentalsolutionsofthegeneraltime-fractionaldiffusionequation,basedontherecentresultsbyMainardietal.[15].Bytime-fractionaldiffusionequationwemeantheevolutionequationobo2þuðx;tÞ¼uðx;tÞ;0

8、2R;t2R;ð1:1Þotbox20wherethetime-fractionalderivativeisintendedintheCaputosense.Foradetaileddiscussiononthisfractionalderivativewereferthereadertoe.g.[8,20].Whenbisnot

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。