面向大规模语料的语言模型研究新进展(1)

面向大规模语料的语言模型研究新进展(1)

ID:34599547

大小:818.18 KB

页数:12页

时间:2019-03-08

面向大规模语料的语言模型研究新进展(1)_第1页
面向大规模语料的语言模型研究新进展(1)_第2页
面向大规模语料的语言模型研究新进展(1)_第3页
面向大规模语料的语言模型研究新进展(1)_第4页
面向大规模语料的语言模型研究新进展(1)_第5页
资源描述:

《面向大规模语料的语言模型研究新进展(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、万方数据计算机研究与发展ISSN1000—12391CN11-17771TPJournalofComputerResearchandDevelopment46(10):1704—1712,2009面向大规模语料的语言模型研究新进展骆卫华1’2刘群2白硕31(中国科学院研究生院北京100049)2(中国科学院计算技术研究所智能信息处理重点实验室北京100190)3(上海证券交易所上海200120)(1uoweihua@ict.ac.cn)AReviewoftheState-of-the-ArtofResearchonLarge-ScaleCorporaOrient

2、edLanguageModelingLuoWeihual”,LiuQun2,andBaiShu031(GraduateUniversityofChineseAcademyofSciences,Beijing100049)2(KeyLaboratoryofIntelligentInformationProcessing,InstituteofComputingTechnology,ChineseAcademyofSciences,Beijing100190)3(ShanghaiSecuritiesExchange,Shanghai200120)AbstractN—

3、gramlanguagemodel(LM)isakeycomponentinmanyresearchareasofnaturallanguageprocessing,suchasstatisticalmachinetranslation,informationretrieval,Speechrecognition,etc.Usinghigher-ordermodelsandmoretrainingdatacansignificantlyimprovetheperformanceofapplications.However,forlimitedresourceso

4、fthesystems(e.g.,memory,usageofCPU,etc).thecostoftrainingandaccessinglarge-scaleI。Mbecomesprohibitivewithmoreandmoremonolingualcorporaavailable.Therefore,theresearchonlarge-scalelanguagemodelingdrawsmoreattention.Theauthorsintroducethestate—of-the-artoftheideasandprogressoftheissue,w

5、hichfocusesonsomerepresentativeapproaches,includinganadhoemethod,arandomizedrepresentationmodelandadistributedparallelframework.TheadhoemethodiSaunifiedoneintegratingdivisionandconqueringofdata,compactdatastructrue,datacompressionbasedonquantizationandmemorymapping.Therandomizedrepre

6、sentationofLMisalossycompressionmodelbasedonBloomfilter.ThedistributedparallelframeworkcarriesoutthetrainingofLMbasedonMapReduceandperformstherequestsofN—gramsinabatchmodeofremotecall.Theperformanceofsystemsofstatisticalmachinetranslationutilizingtheapproachesisdescribedrespectivelyw

7、ithexperiments,andfinallyprosandconsarecompared.Keywordslanguagemodel;datacompression;randomizedaccessmodel;Bloomfilter;distributedparallelarchitecture摘要N元语言模型是统计机器翻译、信息检索、语音识别等很多自然语言处理研究领域的重要工具.由于扩大训练语料规模和增加元数对于提高系统性能很有帮助,随着可用语料迅速增加,面向大规模训练语料的高元语言模型(如N≥5)的训练和使用成为新的研究热点.介绍了当前这个问题的最新研

8、究进展,包括了集成数据分

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。