[2002]Particle Filters for Tracking an Unknown Number of Sources.pdf

[2002]Particle Filters for Tracking an Unknown Number of Sources.pdf

ID:34595491

大小:775.52 KB

页数:12页

时间:2019-03-08

[2002]Particle Filters for Tracking an Unknown Number of Sources.pdf_第1页
[2002]Particle Filters for Tracking an Unknown Number of Sources.pdf_第2页
[2002]Particle Filters for Tracking an Unknown Number of Sources.pdf_第3页
[2002]Particle Filters for Tracking an Unknown Number of Sources.pdf_第4页
[2002]Particle Filters for Tracking an Unknown Number of Sources.pdf_第5页
资源描述:

《[2002]Particle Filters for Tracking an Unknown Number of Sources.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、2926IEEETRANSACTIONSONSIGNALPROCESSING,VOL.50,NO.12,DECEMBER2002ParticleFiltersforTrackinganUnknownNumberofSourcesJean-RenéLarocque,Member,IEEE,JamesP.Reilly,Member,IEEE,andWilliamNg,StudentMember,IEEEAbstract—Thispaperaddressestheapplicationofsequentialim-Inrecent

2、years,therehavebeenseveralmethodsdevelopedportancesampling(SIS)schemestotrackingdirectionsofarrivalforestimatingortrackingtheDOAsofmovingtargetsusing(DOAs)ofanunknownnumberofsources,usingapassivearraypassivesensorsorarraysofsensors,e.g.,[9]–[11],etc.Liketheofsensor

3、s.Thisproposedtechniquehassignificantadvantagesinhigh-resolutionmethods,theseapproachesalsoassumethetar-thisapplication,includingtheabilitytodetectachangingnumberofsignalsatarbitrarytimesthroughouttheobservationperiodandgetsarestationaryoveralimitedtimeinterval.The

4、approachthattherequirementforquasistationarityoveralimitedintervalin[10]isbasedonadaptivelyestimatinganoisesubspacebasismayberelaxed.fromthereceivedsignalcovariancematrix.ThesemethodsthenWeproposetheuseofareversiblejumpMonteCarloMarkovrelyonahigh-resolutiontechniqu

5、esuchasMUSIC[5]toesti-chain(RJMCMC)steptoenhancethestatisticaldiversityofthematedthedesiredDOAs.In[9],amethodbasedonmaximumparticles.Thisstepalsoenablesustointroducetwonovelmovesthatsignificantlyenhancetheperformanceofthealgorithmwhenlikelihoodestimationofanovelsta

6、te-spacerepresentationfortheDOAtrackscross.Thesuperiorperformanceofthemethodistrackingispresented.demonstratedbyexamplesofapplicationoftheparticlefiltertoAnimportantconsiderationintargettrackingproblemsisthesequentialtrackingoftheDOAsofanunknownandnonstationarydata

7、associationproblem,i.e.,theassociationoftrackswithnumberofsourcesandtoascenariowherethetargetscross.Ourmeasurements.InthecasewherepassivearraysofsensorsareresultsarecomparedwiththePASTdmethod.used,thedataassociationproblemreducestotheassociationIndexTerms—Arraysign

8、alprocessing,Bayesianestimation,oftargetsbeforeandaftertheirDOAtrackscrosseachother.modelorderdetection,particlefilters,tracking.In[11],amethodfo

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。