泛函分析(英文)

泛函分析(英文)

ID:34524445

大小:466.57 KB

页数:58页

时间:2019-03-07

泛函分析(英文)_第1页
泛函分析(英文)_第2页
泛函分析(英文)_第3页
泛函分析(英文)_第4页
泛函分析(英文)_第5页
资源描述:

《泛函分析(英文)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、FunctionalAnalysis1DrA.J.WassermannLentterm19991ALTXedbyTimPerutz{commentstosoc-archim-notes@lists.cam.ac.uk.EContents1Introduction42Metricspaces62.1Preliminaries...........................62.2Compactnessandcompleteness.................93Normedspaces133.1Continuitypropertiesofthealgeb

2、raicoperations........143.2Completeness...........................143.3Theuniformnorm........................1423.4Thespace`............................15p3.5The`spaces...........................16p3.6TheLspaces...........................193.7Equivalentnorms.........................20

3、3.8Boundedoperatorsandlinearfunctionals............214Innerproductspaces254.1Closestpointsandtheprojectiontheorem...........264.2OrthonormalbasesandParseval'sequation...........304.3OrthonormalbasesandtheGram-Schmidtprocess.......324.4ThedualofaHilbertspace:theRieszrepresentationtheor

4、em................335FourierseriesandtheDirichletproblem365.1TheDirichletproblem......................405.2UniformlyconvergentFourierseries...............426Applicationtotheta,gammaandzetafunctions456.1Thetafunctions..........................456.2Thegammaandbetafunctions..............

5、...476.3TheRiemannzetafunction...................482CONTENTS37TheStone-WeierstrassTheorem507.1Importantexample:Hermitefunctions.............577.2Productsandeasy`Fubini'theorem...............58Note.The nalchapterofthecourse,onLebesgueintegration,isomittedhereasthiswassuppliedinprintedf

6、ormbyDrWassermann.ThesenotesdonotalwaysreproduceverbatimwhatDrWassermannwroteontheboard,butthechangesareminor-theysuitedme,andtheymightnotpleaseeveryone.Iwouldalsoencourageyounottoseethesenotesasasubstituteforgoingtothelectures,whichcontainmorejokesandarebilledbythelectureras`mellow'.

7、..T.P.Chapter1IntroductiontherelectroniclecturenotesareavailablefromtheArchimedeans.Alistofavailablecourses,andthenotesmaybedownloadedfromhttp://www.cam.ac.uk/CambUniv/Societies/archim/notes.htmoryoucanemailsoc-archim-notes@lists.cam.ac.uktogetacopyofthesetsyourequire.4Copyright(c)The

8、Archi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。