资源描述:
《a bilateral version of the shannon-mcmillan-breiman theoremnew》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、ABilateralVersionoftheShannon-McMillan-BreimanTheoremPierreTisseurLaboratoireG´enomeetInformatiqueUniversit´ed’Evry,TourEvry2.December5,2003AbstractWegiveanewversionoftheShannon-McMillan-Breimantheoreminthecaseofabijectiveaction.ForafinitepartitionαofacompactsetXandameasurableaction
2、TonX,wedenotebyCn,m,αT(x)theelementofthepartitionα∨T1α∨...∨Tmα∨T−1α∨...∨T−nαwhichcontainsapointx.Weprovethatforµ-almostallx,−1Tlimlogµ(Cn,m,α(x))=hµ(T,α),n+m→∞n+mwhereµisaT-ergodicprobabilitymeasureandhµ(T,α)isthemetricentropyofTwithrespecttothepartitionα.1IntroductionTheShannon-
3、McMillan-Breimantheorem[2],[3]isusedinmanyproblemsrelatedtothemetricentropymapofanergodicmeasure.Weextendthiswell-knownresulttothecaseofabijectivedynamicalsystem.OurprooffollowsthelineofPetersen’sproof[3].Weillustratethisnewresultwithanexamplethatgivesaninequalitybetweenshiftsandce
4、llularautomataentropiesandsomeanalogoftheLyapunovexponents.OurbilateralversionoftheShannon-McMillan-Breimantheoremisexpectedtobeusefulinotherareasofdynamicalsystems.12BackgroundmaterialLetXbeacompactspace,µaprobabilitymeasureonXandTameasurablemapfromXtoX.Wedenotebyαafinitepartitiono
5、fXandbyCT(x)n,αtheelementofthepartitionα∨T−1α∨...∨T−nαwhichcontainsthepointx.ForallpointxtheinformationmapIisdefinedbyXTI(α)(x)=−logµ(Cα(x))=−logµ(A)χA(x),A∈αwhereCT(x)istheelementofαwhichcontainsxandχisthecharacteristicαAfunctiondefinedby1ifx∈A,χA(x)=0otherwise.Theinformationmapsat
6、isfiesI(α∨β)=I(α)+I(β
7、α),(1)−1I(Tα
8、Tβ)=I(α
9、β)◦T.(2)ThesetwopropertiesareeasilyprovedfromthedefinitionofIandthefactthatTisasurjectivemap.Wereferto[3,p.238],[4,Chap.8]foradetailedproofof(1)and(2).AsimpleformulationofthemetricentropywithrespecttothepartitionαisgivenbyZnkhµ(T,α)=limI(α
10、∨
11、k=1Tα)(x)dµ(x),n→∞XwhereXµ(A∩B)I(α
12、β)(x)=−χA∩B(x)logµ(B)A∈α,B∈βistheconditionalinformationmaprepresentingthequantityofinformationgivenbythepartitionαknowingthepartitionβaboutthepointx.WerecalltheShannon-McMillan-Breimantheorem[2][3].Theorem1(Shannon-McMillan-Breiman’stheorem)Ifµi
13、saT-ergodicmeasure,thenfor