some bi-hamiltonian equations in $r^3$new

some bi-hamiltonian equations in $r^3$new

ID:34427762

大小:178.71 KB

页数:34页

时间:2019-03-06

some bi-hamiltonian equations in $r^3$new_第1页
some bi-hamiltonian equations in $r^3$new_第2页
some bi-hamiltonian equations in $r^3$new_第3页
some bi-hamiltonian equations in $r^3$new_第4页
some bi-hamiltonian equations in $r^3$new_第5页
资源描述:

《some bi-hamiltonian equations in $r^3$new》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、HAMILTONIANEQUATIONSINR3AhmetAy,MetinG¨ursesandKostyantynZheltukhinDepartmentofMathematics,FacultyofSciencesBilkentUniversity,06800Ankara,TurkeyFebruary5,2008AbstractHamiltonianformulationofN=3systemsisconsideredingeneral.ThemostgeneralsolutionoftheJacobiequationinR3is

2、proposed.Theformofthesolutionisshowntobevalidalsointheneighbor-hoodofsomeirregularpoints.CompatiblePoissonstructuresandcorrespondingbi-Hamiltoniansystemsarealsodiscussed.Hamilto-nianstructures,classificationofirregularpointsandthecorrespond-arXiv:nlin/0304002v3[nlin.SI]

3、26Aug2003ingreducedfirstorderdifferentialequationsofseveralexamplesaregiven.01.Introduction.Hamiltonianformulationofasystemofdynamicalequationsisimportantnotonlyinmathematicsbutalsoinphysicsandotherbranchesofnaturalsciences.Theyingeneraldescribeconservedsystems.Amongallp

4、ossibleodddimensionalcasesthethreedimensionaldynamicalsystemshaveauniqueposition.TheJacobiequationinthiscasereducestoasinglescalarequationforthreecomponentsofthePoissonstructureJ.DuetothispropertyN=3dynamicalsystemsattractedmanyresearchestoderivenewHamiltoniansystems,[

5、6]–[12].Morerecently[1],[2]alargeclassofsolutionsoftheJacobiequationinR3wasgiven.Poissonstructures,inalldimensions,werealsoconsideredin[3].Inthiswork,weconsidergeneralsolutionofJacobiequationinR3.WefindthecompatiblePoissonstructuresandgivethecorrespondingbi-Hamiltonians

6、ystems.Wegiveallexplicitexamplesinaspecialsectionandatableattheend.LetusgivenecessaryinformationaboutthePoissonstructuresinR3.AmatrixJ=(J),i,j=1,2,3,definesaPoissonstructureinR3ifitisijskew-symmetric,Jij=−Jji,anditsentriessatisfytheJacobiequationlijkljkilkijJ∂lJ+J∂lJ+J∂

7、lJ=0,(1)wherei,j,k=1,2,3.Hereweusethesummationconvention,meaningthatrepeatedindicesaresummedup.Letusintroducethefollowingnotations.FormatrixJputJ12=u,J31=v,J23=w.ThenJacobiequation(1)takes1theformu∂1v−v∂1u+w∂2u−u∂2w+v∂3w−w∂3v=0.(2)Itcanalsoberewrittenas2v2u2wu∂1+w∂2+v∂

8、3=0.(3)uwv(Weassumethatnoneofthefunctionsu,vandwvanish.Ifanyoneofthesefunctionsvanishesthentheequation(2)becomestrivi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。