欢迎来到天天文库
浏览记录
ID:34406296
大小:4.59 MB
页数:93页
时间:2019-03-05
《Andrew Ng 机器学习 笔记coursera ml notes.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、COURSERA机器学习课笔记byProf.AndrewNgNotesbyRyanCheungRyanzjlib@gmail.comWeibo@小小人_V目录目录.............................................................................................................................................................1Week1机器学习介绍..........................
2、...................................................................................................71机器学习介绍.....................................................................................................................................71.1什么是机器学习?........................
3、....................................................................................................71.2监督学习(SupervisedLearning)................................................................................................71.3非监督学习(UnsupervisedLearning).....................
4、...................................................................9Week1单变量线性回归......................................................................................................................112单变量线性回归(LinearRegressionwithOneVariable)...................................
5、........................112.1模型表达(ModelRepresentation)............................................................................................112.2代价函数(CostFunction).........................................................................................................12
6、2.3梯度下降(GradientDescent)....................................................................................................132.4对线性回归运用梯度下降法........................................................................................................13Week2多变量线性回归.................
7、.....................................................................................................153多变量线性回归(LinearRegressionwithMultipleVariables)..................................................153.1多维特征(MultipleFeatures).................................................
8、.................................................153.2多变量梯度下降(Gradie
此文档下载收益归作者所有