欢迎来到天天文库
浏览记录
ID:34397602
大小:786.52 KB
页数:23页
时间:2019-03-05
《ε-算子和ε-noether环》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、E一算子和g—Noether环基础数学专业研究生余琳指导教师王芳责(教授)摘要本文主要研究了MFG整环上的£一算子.我们首先引入6一无挠模,极大性内射模,MFG整环,£一包络并推导出了MFG整环上的E一算子.在此基础上定义£一有限型模并讨论其相关性质.接着给出了E—Noether环的概念,即R是MFG整环且满足占一子模的升链条件,并对g—Noether环进行了一系列的等价刻画.如MFG整环R的每个极大理想是£一有限型的可以判断R是£一Noether环.通过引入£一不可约子模,证明了£一Noether模的任何真子模都有准素£一子模的£一准素分解.最后我们将Noether环上的主理想定理推广到
2、了£一Noether环上.关键词:6一无挠模;极大性内射理想;MFG整环;非极大素理想;}包络;£一有限型模;£一Noether模:E—Noether环£一Operationsand£一NoetherRingsMaster:场LinPureMathematicsSupervisor:WangFangguiAbstrctThisthesismainlystudiesthe£一OperationsonMFGdomains.Firstly,weintroduceG。torsionfree,max-injectivemodules,MFGdomains,e-envelopesanddeduceth
3、e£一OperationsonMFGdomains.Onthebasisofthese.wedefinetheE—modulesoffinitetypeanddiscusstherelatedcharacterofthem.Thenwegivetheconceptof£一NoetherringswhichisdefinedonMFGdomainssatisfyingACConE-submodules,andgiveaseriesofcharacterizationson£一Noetherrings.Forexample,ifeverymaximalidealoftheMFGdomainRi
4、sof£finitetype,thenRisaE—Noetherring.Byintroducing£一irreduciblesubmodules,weprovethatanypropersubmoduleof£一Noethermoduleshas£primary.decompositionofprimary£一submodules.Finally,weextendtheprincipalidealtheoryonNoetherringstoE-Noetherrings.Keywords:6一torsionfree;max-injectiveideals;MFGdomains;non—ma
5、ximalprimeideals;£一envelopes;£一modulesoffinitetype;£一Noethermodules;£-Noetherrings目录箍要....................................··-······..一一一·ABSTRACT..................................···-···········1弓}言...........................................-.·······2预备知识...........................................
6、...-.·2.1交换环上的6一无挠模.........................................2.2极大毪内射模..............................................3MFG整环土韵£一算子..........................................3.1S-"包终诱导的三一算子..........................................3.2s一有限型模..............................................。.4三一Noether环....
7、............................................4.15一Noether模...............................................4.2£一准素分解................................................参考文献...............................................
此文档下载收益归作者所有