欢迎来到天天文库
浏览记录
ID:34395582
大小:228.23 KB
页数:4页
时间:2019-03-05
《on some sequences of integersnew》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、MATHEMATICSOFCOMPUTATIONVolume65,Number214April1996,Pages837{840d-COMPLETESEQUENCESOFINTEGERSP.ERDOSANDMORDECHAILEWIN}Abstract.Aninnitesequencea12、γnonnegative.1.IntroductionAninnitesequenceofintegersa13、itiveintegersiscomplete.Cassels[2]considerablygeneralizestheresultofBirch.Inthispaperweareconcernedwithd-completenessofsetsoftheformfpqgandfpqrγgwith;;γnonnegative.ThiswasmotivatedbyaquestionaskedbyPaulErd}os:Isittruethateveryinteger>1isthesumofdistinctintegersoftheform23(andnonnegativeintegers)w4、herenosummanddividestheother?"Overestimatingthedicultyoftheproblem,hetoldittoJansenandwroteittoLewin.Jansenalmostimmediatelygaveasimpleproofbyinduction,whichwasalsofoundbyLewinandbyseveralotherstowhomErd}oswroteortoldtheproblem.Forthesakeofcompletenessweshallreproducethesimpleproofinthecurrentpaper5、.Seealso[3].2.ThemainresultsProposition1(AppearedalsoasaQuickie"in[3]).Thesequencef23gisd-complete.Proof.Upton=3thepropositionclearlyholds.Nowletalltheintegersupton,3p6、andsomisrepresentableand3pdoesnotdivideanysummandrepresentingm.Thennisrepresentable.Thisprovestheproposition.ReceivedbytheeditorJanuary30,1994and,inrevisedform,August3,1994,February12,1995,andMarch16,1995.1991MathematicsSubjectClassication.Primary11B13.c1996AmericanMathematicalSociety837838P.ERDOSA7、NDMORDECHAILEWIN}Thequestionwhetherfornlargeenoughitcanalwaysbewrittenintheformn=a+a++awhereallthea'sareoftheform23andallareinan12kinterval(x;2x)yieldsanegativeanswer,sincethenumberofintegersofthef
2、γnonnegative.1.IntroductionAninnitesequenceofintegersa13、itiveintegersiscomplete.Cassels[2]considerablygeneralizestheresultofBirch.Inthispaperweareconcernedwithd-completenessofsetsoftheformfpqgandfpqrγgwith;;γnonnegative.ThiswasmotivatedbyaquestionaskedbyPaulErd}os:Isittruethateveryinteger>1isthesumofdistinctintegersoftheform23(andnonnegativeintegers)w4、herenosummanddividestheother?"Overestimatingthedicultyoftheproblem,hetoldittoJansenandwroteittoLewin.Jansenalmostimmediatelygaveasimpleproofbyinduction,whichwasalsofoundbyLewinandbyseveralotherstowhomErd}oswroteortoldtheproblem.Forthesakeofcompletenessweshallreproducethesimpleproofinthecurrentpaper5、.Seealso[3].2.ThemainresultsProposition1(AppearedalsoasaQuickie"in[3]).Thesequencef23gisd-complete.Proof.Upton=3thepropositionclearlyholds.Nowletalltheintegersupton,3p6、andsomisrepresentableand3pdoesnotdivideanysummandrepresentingm.Thennisrepresentable.Thisprovestheproposition.ReceivedbytheeditorJanuary30,1994and,inrevisedform,August3,1994,February12,1995,andMarch16,1995.1991MathematicsSubjectClassication.Primary11B13.c1996AmericanMathematicalSociety837838P.ERDOSA7、NDMORDECHAILEWIN}Thequestionwhetherfornlargeenoughitcanalwaysbewrittenintheformn=a+a++awhereallthea'sareoftheform23andallareinan12kinterval(x;2x)yieldsanegativeanswer,sincethenumberofintegersofthef
3、itiveintegersiscomplete.Cassels[2]considerablygeneralizestheresultofBirch.Inthispaperweareconcernedwithd-completenessofsetsoftheformfpqgandfpqrγgwith;;γnonnegative.ThiswasmotivatedbyaquestionaskedbyPaulErd}os:Isittruethateveryinteger>1isthesumofdistinctintegersoftheform23(andnonnegativeintegers)w
4、herenosummanddividestheother?"Overestimatingthedicultyoftheproblem,hetoldittoJansenandwroteittoLewin.Jansenalmostimmediatelygaveasimpleproofbyinduction,whichwasalsofoundbyLewinandbyseveralotherstowhomErd}oswroteortoldtheproblem.Forthesakeofcompletenessweshallreproducethesimpleproofinthecurrentpaper
5、.Seealso[3].2.ThemainresultsProposition1(AppearedalsoasaQuickie"in[3]).Thesequencef23gisd-complete.Proof.Upton=3thepropositionclearlyholds.Nowletalltheintegersupton,3p6、andsomisrepresentableand3pdoesnotdivideanysummandrepresentingm.Thennisrepresentable.Thisprovestheproposition.ReceivedbytheeditorJanuary30,1994and,inrevisedform,August3,1994,February12,1995,andMarch16,1995.1991MathematicsSubjectClassication.Primary11B13.c1996AmericanMathematicalSociety837838P.ERDOSA7、NDMORDECHAILEWIN}Thequestionwhetherfornlargeenoughitcanalwaysbewrittenintheformn=a+a++awhereallthea'sareoftheform23andallareinan12kinterval(x;2x)yieldsanegativeanswer,sincethenumberofintegersofthef
6、andsomisrepresentableand3pdoesnotdivideanysummandrepresentingm.Thennisrepresentable.Thisprovestheproposition.ReceivedbytheeditorJanuary30,1994and,inrevisedform,August3,1994,February12,1995,andMarch16,1995.1991MathematicsSubjectClassication.Primary11B13.c1996AmericanMathematicalSociety837838P.ERDOSA
7、NDMORDECHAILEWIN}Thequestionwhetherfornlargeenoughitcanalwaysbewrittenintheformn=a+a++awhereallthea'sareoftheform23andallareinan12kinterval(x;2x)yieldsanegativeanswer,sincethenumberofintegersofthef
此文档下载收益归作者所有