资源描述:
《51(2014)609–633. Some results on conditionally uniformly strong mixing sequences of random variables..pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、J.KoreanMath.Soc.51(2014),No.3,pp.609{633http://dx.doi.org/10.4134/JKMS.2014.51.3.609SOMERESULTSONCONDITIONALLYUNIFORMLYSTRONGMIXINGSEQUENCESOFRANDOMVARIABLESDe-MeiYuan,Xue-MeiHu,andBaoTaoReprintedfromtheJournaloftheKoreanMathematicalSocietyVol.51,No.3,May2014⃝c20
2、14KoreanMathematicalSocietyJ.KoreanMath.Soc.51(2014),No.3,pp.609–633http://dx.doi.org/10.4134/JKMS.2014.51.3.609SOMERESULTSONCONDITIONALLYUNIFORMLYSTRONGMIXINGSEQUENCESOFRANDOMVARIABLESDe-MeiYuan,Xue-MeiHu,andBaoTaoAbstract.Fromtheordinarynotionofuniformlystrongmi
3、xingforase-quenceofrandomvariables,anewconceptcalledconditionallyuniformlystrongmixingisproposedandtherelationbetweenuniformlystrongmix-ingandconditionallyuniformlystrongmixingisansweredbyexamples,thatis,uniformlystrongmixingneitherimpliesnorisimpliedbycondi-tiona
4、llyuniformlystrongmixing.Acoupleofequivalentdefinitionsandsomeofbasicpropertiesofconditionallyuniformlystrongmixingran-domvariablesarederived,andseveralconditionalcovarianceinequalitiesareobtained.Bymeansofthesepropertiesandconditionalcovarianceinequalities,acondit
5、ionalcentrallimittheoremstatedintermsofcondi-tionalcharacteristicfunctionsisestablished,whichisaconditionalversionoftheearlierresultunderthenon-conditionalcase.1.IntroductionanddefinitionWewillbeworkingonafixedprobabilityspace(Ω,A,P).Considerasequence{Xn,n≥1}ofrando
6、mvariablesandletAk=σ(X,...,X),A∞=σ(X,X,...)11kk+nk+nk+n+1betheσ-algebrasinducedbytherespectiverandomvariables,wherekandnarearbitrarypositiveintegers.Then{Xn,n≥1}issaidtobeuniformlystrongmixingorϕ-mixingifthereexistsanonnegativesequenceϕ(n)convergingtozeroasn→∞such
7、that (1.1)PBAk−P(B)≤ϕ(n)1ReceivedNovember5,2013;RevisedJanuary28,2014.2010MathematicsSubjectClassification.60E10,60E15,60G10.Keywordsandphrases.conditionallyuniformlystrongmixing,conditionalcovarianceinequality,conditionalindependence,conditionalstationarity,condi
8、tionalcentrallimittheo-rem,conditionalcharacteristicfunction.Theauthorswouldliketothanktheanonymousrefereessincerelyfortheirvaluablecommentsandimproving