DIY Deep Learning for Vision- a Hands-On Tutorial with Caffe.pdf

DIY Deep Learning for Vision- a Hands-On Tutorial with Caffe.pdf

ID:34364277

大小:11.34 MB

页数:79页

时间:2019-03-05

DIY Deep Learning for Vision- a Hands-On Tutorial with Caffe.pdf_第1页
DIY Deep Learning for Vision- a Hands-On Tutorial with Caffe.pdf_第2页
DIY Deep Learning for Vision- a Hands-On Tutorial with Caffe.pdf_第3页
DIY Deep Learning for Vision- a Hands-On Tutorial with Caffe.pdf_第4页
DIY Deep Learning for Vision- a Hands-On Tutorial with Caffe.pdf_第5页
资源描述:

《DIY Deep Learning for Vision- a Hands-On Tutorial with Caffe.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、DIYDeepLearningforVision:aHands-OnTutorialwithCaffecaffe.berkeleyvision.orggithub.com/BVLC/caffeEvanShelhamer,JeffDonahue,YangqingJia,RossGirshickLookforfurtherdetailsintheoutlinenotesWhyDeepLearning?TheUnreasonableEffectivenessofDeepFeaturesClassesseparateinthedeeprepresentationsandtransfer

2、tomanytasks.[DeCAF][Zeiler-Fergus]WhyDeepLearning?TheUnreasonableEffectivenessofDeepFeaturesMaximalactivationsofpoolunits[R-CNN]5convDeConvvisualizationRichvisualstructureoffeaturesdeepinhierarchy.5[Zeiler-Fergus]WhatisDeepLearning?CompositionalModelsLearnedEnd-to-EndWhatisDeepLearning?Vasts

3、paceofmodels!Caffemodelsareloss-driven:-supervised-unsupervisedslidecreditMarc’aurelioRanzato,CVPR‘14tutorial.ConvolutionalNeuralNets(CNNs):1989LeNet:alayeredmodelcomposedofconvolutionandsubsamplingoperationsfollowedbyaholisticrepresentationandultimatelyaclassifierforhandwrittendigits.[LeNet

4、]ConvolutionalNets:2012AlexNet:alayeredmodelcomposedofconvolution,+datasubsampling,andfurtheroperationsfollowedbyaholistic+gpurepresentationandall-in-allalandmarkclassifieron+non-saturatingnonlinearityILSVRC12.[AlexNet]+regularizationConvolutionalNets:2012AlexNet:alayeredmodelcomposedofconvo

5、lution,pooling,andfurtheroperationsfollowedbyaholisticrepresentationandall-in-allalandmarkclassifieronILSVRC12.[AlexNet]Thefully-connected“FULL”layersarelinearclassifiers/matrixmultiplications.ReLUarerectified-linearnon-linearitiesontheoutputoflayers.parametersFLOPsfigurecreditY.LeCunandM.A.

6、Ranzato,ICML‘13tutorialConvolutionalNets:2014ILSVRC14Winners:~6.6%Top-5error-GoogLeNet:compositionofmulti-scaledimension-+depthreducedmodules(pictured)+data-VGG:16layersof3x3convolutioninterleavedwith+dimensionalityreductionmaxpooling+3fully-connectedlayersLearningaboutDeepLearningRefertothe

7、TutorialonDeepLearningforVisionfromCVPR‘14.●FundamentalsonsupervisedandunsuperviseddeeplearningbyMarc’AurelioRanzato●Listofreferencestoexplore●AdvancedideasandcurrentresearchdirectionsPairswellwiththistutorial!Frameworks●Torch7○NYU○scientificcomput

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。