deep_learning_for_information_retrieval

deep_learning_for_information_retrieval

ID:40714130

大小:1.79 MB

页数:136页

时间:2019-08-06

deep_learning_for_information_retrieval_第1页
deep_learning_for_information_retrieval_第2页
deep_learning_for_information_retrieval_第3页
deep_learning_for_information_retrieval_第4页
deep_learning_for_information_retrieval_第5页
资源描述:

《deep_learning_for_information_retrieval》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、SIGIR2016TutorialPisaItalyJuly17,2016DeepLearningforInformationRetrievalHangLi&ZhengdongLuHuaweiNoah’sArkLabOutlineofTutorial•Introduction•Part1:BasicsofDeepLearning•Part2:FundamentalProblemsinDeepLearningforIR•Part3:ApplicationsofDeepLearningtoIR•SummaryOverviewofInformationRetri

2、evalContent:Documents,Images,Intent:RelationalTablesKeyWords,QuestionQueryInformationInformationandRetrievalSystemKnowledgeBaseRelevantResultKeyQuestions:HowtoRepresentIntentandContent,HowtoMatchIntentandContent•Ranking,indexing,etcarelessessential•InteractiveIRisnotparticularlyco

3、nsideredhereApproachinTraditionalIRDocument:Query:StarWars:EpisodeVIIstarwarstheforceawakensreviewsThreedecadesafterthedefeatoftheGalacticEmpire,anewthreatarises.qd11f(q,d)00q,df(q,d)VSM

4、

5、q

6、

7、

8、

9、d

10、

11、01•Representingqueryanddocumentastf-idfvectors•Calculatin

12、gcosinesimilaritybetweenthem•BM25,LM4IR,etccanbeconsideredasnon-linearvariantsApproachinModernIRQuery:Document:starwarstheforceawakensreviewsStarWars:EpisodeVIIThreedecadesafterthedefeatoftheGalacticqdEmpire,anewthreatarises.(starwars)vv(theforceawakens)q1f(q,d)d1(reviews)vvqmd

13、n•Conductingqueryanddocumentunderstanding•Representingqueryanddocumentasfeaturevectors•Calculatingmultiplematchingscoresbetweenqueryanddocument•Trainingrankerwithmatchingscoresasfeaturesusinglearningtorank“Easy”ProblemsinIR•Search–Matchingbetweenqueryanddocument•QuestionAnsweringf

14、romDocuments–Matchingbetweenquestionandanswer•Wellstudiedsofar•DeepLearningmaynothelpsomuch“Hard”ProblemsinIR•ImageRetrieval–Matchingbetweentextandimage–Notthesameastraditionalsetting•QuestionAnsweringfromKnowledgeBase–Complicatedmatchingbetweenquestionandfactinknowledgebase•Gener

15、ation-basedQuestionAnswering–Generatinganswertoquestionbasedonfactsinknowledgebase•Notwellstudiedsofar•DeepLearningcanmakeabigdealHardProblemsinIRQuestionAnsweringNameHeightWeightQ:HowtallisYaoMing?fromKnowledgeBaseYaoMing2.29m134kgLiuXiang1.89m85kg(Notagonimages)ImageRetrievalQ:A

16、dogcatchingaballGeneration-basedT

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签