欢迎来到天天文库
浏览记录
ID:34352931
大小:3.32 MB
页数:16页
时间:2019-03-05
《北京市中国人民大学附属中学高一上学期期中考试数学---精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人大附中2018~2019学年度第一学期期中高一年级数学&必修1模块考核试卷一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.设集合A={,,0},B={2,4},若A∩B={2},则实数a的值为()A.2B.±2C.D.±【答案】D【解析】【分析】因为,所以或,算出后代人检验可得正确结果.【详解】因为,因为或,当时,,,不合题意,舎;当时,,,符合;当时,,,符合;综上,选D.【点睛】本题考察集合中元素的性质,一般地,集合中的元素有确定性、互异性和无序性,解题时应根据集
2、合间的关系及无序性得到集合中参数满足的等量关系,算出参数的值后再检验元素的互异性.2.计算的结果是()A.B.C.-D.-【答案】A【解析】【分析】先把化为,再利用对数的运算性质得到对数的值.【详解】,故选A.【点睛】对数有如下的运算规则:(1),;(2);(3);(4).3.下列函数中,是偶函数的是()A.f(x)=B.f(x)=lgxC.f(x)=D.f(x)=
3、x
4、【答案】D【解析】【分析】先判断各函数的定义域是否关于原点对称,再检验是否恒成立.【详解】A中,,,不是偶函数;B中,定义域不关于原点对称,不是偶函数;C中,,,不是偶函数;D中,,故为偶函数,综上,选
5、D.【点睛】判断一个函数是否为偶函数或奇函数,应先求出该函数的定义域,如果定义域不关于原点对称,则该函数为非奇非偶函数,在定义域关于原点对称的条件下,我们再检验与的关系.注意说明一个函数是非奇非偶函数,可用反例说明.4.函数的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【答案】B【解析】【分析】因为函数为上的增函数,故利用零点存在定理可判断零点所在的区间.【详解】因为为上的增函数,为上的增函数,故为上的增函数.又,,由零点存在定理可知在存在零点,故选B.【点睛】函数的零点问题有两种类型,(1)计算函数的零点,比如二次函数的零点等,有时我们
6、可以根据解析式猜出函数的零点,再结合单调性得到函数的零点,比如;(2)估算函数的零点,如等,我们无法计算此类函数的零点,只能借助零点存在定理和函数的单调性估计零点所在的范围.5.已知,则函数的大致图象是()A.B.C.D.【答案】A【解析】【分析】令后可得即,平移幂函数的图像可得该函数的图像.【详解】令后可得即,考虑函数,将该函数的图像向右平移一个单位后可得的图像,故选A.【点睛】函数的图像变换有如下两种:(1)平移变换:;;;.(2)对称变换;;;.6.设a=,b=,c=,则a,b,c的大小关系为()A.a>c>bB.a>b>cC.b>a>cD.c>a>b【答案】B【
7、解析】【分析】可利用为上的增函数得到的大小关系,再利用换底公式得到利用为上的增函数可得的大小关系,最后得到的大小关系.【详解】因为为上的增函数,故,故.又由换底公式可知,因为上的增函数,故,故即,综上,,故选B.【点睛】本题考察对数的大小比较,属于基础题.7.已知,恒成立,则实数a的取值范围是()A.B.C.D.【答案】D【解析】【分析】因,故原不等式等价于在上恒成立,故可得实数的取值范围.【详解】因为,故,故在上恒成立等价于在上恒成立,故即,故选D.【点睛】一元二次不等式的恒成立问题,可通过其对应的二次函数的图像和性质来讨论,也可以用参变分离的方法把恒成立问题转化为一
8、个新的函数的最值问题,特别地,如果一元二次不等式对应的函数解析式可以因式分解,则可以把恒成立的问题转为一元一次不等式的恒成立问题.8.设函数,其中表示不超过x的最大整数,若函数的图象与函数的图象恰有3个交点,则实数a的取值范围是()A.B.C.D.【答案】D【解析】【分析】利用当时有,故函数在具有“局部周期性”,故可在平面直角坐标系中画出函数的图像,结合的图像与的图像有3个交点可以得到实数的取值范围.【详解】,而,故当时,,故在上的图像如图所示:因为的图像与的图像有3个交点,故,故,故选D.【点睛】不同函数图像的交点问题,关键在于正确刻画函数的图像,可以用图像变换的方法
9、把复杂函数的图像归结基本初等函数的图像的平移或对称变换等,也可以根据解析式的特点先刻画函数的局部图像,再根据函数的性质得到其他范围上的图像.二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸上的相应位置.)9.计算:=________.【答案】1【解析】【分析】利用对数的运算规则可得计算结果.【详解】因为,故填.【点睛】对数有如下的运算规则:(1),;(2);(3);(4).10.已知集合,,若,则实数的取值范围是______.【答案】【解析】【分析】在数轴上画出两个集合对应的范围,利用可得实数的取值范围.【详解】如图,
此文档下载收益归作者所有