高中数学计数原理知识点总结和练习教案_学生

高中数学计数原理知识点总结和练习教案_学生

ID:34222396

大小:433.50 KB

页数:10页

时间:2019-03-04

高中数学计数原理知识点总结和练习教案_学生_第1页
高中数学计数原理知识点总结和练习教案_学生_第2页
高中数学计数原理知识点总结和练习教案_学生_第3页
高中数学计数原理知识点总结和练习教案_学生_第4页
高中数学计数原理知识点总结和练习教案_学生_第5页
资源描述:

《高中数学计数原理知识点总结和练习教案_学生》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、...教师:学生:时间:_2016_年__月日段第__次课教师学生姓名上课日期月日学科数学年级高二教材版本人教版类型知识讲解:√考题讲解:√本人课时统计第()课时共()课时学案主题选修2-3第一章《计数原理》复习课时数量第()课时授课时段教学目标1.明确分类和分步计数原理及应用; 2.掌握排列组合概念和计算,以及二项式定理和应用教学重点、难点排列组合及计数原理的应用。掌握二项式定理和应用。教学过程知识点复习【知识点梳理】计数原理基本知识点1.分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办

2、法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有种不同的方法2.分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法3.排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列4.排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示5.排列数公式:()6阶乘:表示正整数1到的连乘

3、积,叫做的阶乘规定.7.排列数的另一个计算公式:=.8组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合9.组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数.用符号表示.10.组合数公式:或WORD格式可编辑版...11组合数的性质1:.规定:;12.组合数的性质2:=+1.二项式定理及其特例:(1),(2).2.二项展开式的通项公式:3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性4.二

4、项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和5.二项式系数的性质:(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵).直线是图象的对称轴.(2)增减性与最大值:当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值.(3)各二项式系数和:∵,令,则[特别提醒]1.在运用二项式定理时一定要牢记通项公式,注意与虽然相同,但具体到它们展开式的某一面时却是不相同的,所以我们一定要注意顺序问题。另外二项展开式的二项式系数与该项的(字母)系

5、数是两个不同的概念,前者只是指,而后者是指字母外的部分。2.在使用通项公式时,要注意:(1)通项公式是表示第r+1项,而不是第r项.(2)展开式中第r+1项的二项式系数C与第r+1项的系数不同.(3)通项公式中含有a,b,n,r,T五个元素,只要知道其中的四个元素,就可以求出第五个元素.在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组).这里必须注意n是正整数,r是非负整数且r≤n.排列组合复习巩固WORD格式可编辑版...1.分类计数原理

6、(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1.由0

7、,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相

8、声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。