资源描述:
《Recent progress on the Poincaré conjecture and the classification of 3-manifolds (1).PDF》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、BULLETIN(NewSeries)OFTHEAMERICANMATHEMATICALSOCIETYVolume42,Number1,Pages57–78S0273-0979(04)01045-6ArticleelectronicallypublishedonOctober29,2004RECENTPROGRESSONTHEPOINCARECONJECTUREAND´THECLASSIFICATIONOF3-MANIFOLDSJOHNW.MORGANIntroductionMotivatedbywhatw
2、aswell-knownatthetimeaboutsurfaces,andafteralongtopologicalstudyof3-manifolds,attheveryendofhis1904paperPoincar´e[18]statesthatthereremainsonequestiontotreat,namely(reformulatedinmodernlanguage):IfMisaclosed3-manifoldwithtrivialfundamentalgroup,thenisMdiffe
3、omorphic1toS3?ThePoincar´eConjectureisthattheanswertothisquestionis“Yes.”De-velopingtoolstoattackthisproblemformedthebasisformuchoftheworkin3-dimensionaltopologyoverthelastcentury,includingforexample,theproofofDehn’slemmaandthelooptheoremandthestudyofsurge
4、ryonknotsandlinks.Inthe1980’sThurstondevelopedanotherapproachto3-manifolds,see[24]and[4].Heconsidered3-manifoldswithriemannianmetricsofconstantnegativecur-vature−1.Thesemanifolds,whicharelocallyisometrictohyperbolic3-space,arecalledhyperbolicmanifolds.Ther
5、earefairlyobviousobstructionsshowingthatnotevery3-manifoldcanadmitsuchametric.Thurstonformulatedagen-eralconjecturethatroughlysaysthattheobviousobstructionsaretheonlyones;shouldtheyvanishforaparticular3-manifoldthenthatmanifoldadmitssuchametric.Hisproofofv
6、ariousimportantspecialcasesofthisconjectureledhimtoformulateamoregeneralconjectureabouttheexistenceoflocallyhomoge-neousmetrics,hyperbolicorotherwise,forallmanifolds;thisiscalledThurston’sGeometrizationConjecturefor3-manifolds.Thestatementofthisconjecturei
7、ssomewhatcomplicated,soitisdeferreduntilSection2.AnimportantpointisthatThurston’sGeometrizationConjectureincludesthePoincar´eConjectureasaveryspecialcase.Inaddition,Thurston’sconjecturehastwoadvantagesoverthePoincar´eConjecture:•Itappliestoallclosedoriente
8、d3-manifolds.•Itpositsacloserelationshipbetweentopologyandgeometryindimensionthree.ReceivedbytheeditorsJune11,2004,and,inrevisedform,September1,2004.2000MathematicsSubjectClassification.Primary57M50,57M27,58J3