欢迎来到天天文库
浏览记录
ID:34159089
大小:5.27 MB
页数:46页
时间:2019-03-03
《基于mapreduce的微博好友推荐研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、万方数据Abstractonlyconsideredthenetworkstructuralpropertyofusers’friendsrelationship.Andusers’behaviorpropertywasignored,whichwasreflectedbytheusers’influence.Inthispaper,webringusers’influenceintheprocessoffriendrecommendationbasedonthetheoryofthethree.degreeinfluence,anddiscussthea1面thmVseffec
2、tivenessafterconsideringtheuser'sinfluence.Keywordssocialnetwork;microblog;MapReduce;friendrecommendation;userinfluence.UI.万方数据目录摘
3、要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯。⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..IAbstract⋯..⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯II1绪论⋯⋯..⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯...⋯⋯⋯⋯⋯⋯⋯⋯..⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯
4、⋯⋯⋯.11.1研究背景⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11.2微博概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11.2-1微博简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11.2.2微博发展历程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21.2.3微博发展趋势⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.21.3国内外研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31.3.1好友推荐系统研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31.3
5、.2用户影响力评价研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31.3.3云计算研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯41.4论文结构和内容⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯52相关概念和技术介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.62.1云计算简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62.2Google云计算技术研究⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯82.2.1GFS⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
6、⋯⋯⋯⋯⋯..8:;!.2.2MapReduce⋯..⋯.⋯⋯⋯.⋯⋯.⋯⋯.⋯⋯.⋯.⋯⋯....⋯⋯.⋯.⋯⋯.⋯.⋯..⋯..⋯.⋯⋯⋯.⋯⋯.⋯..⋯..⋯..92.2.3BigTable⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯102.3Hadoop分布式技术⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.112.3.1HDFS⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12:;!.3.2MapReduce⋯⋯⋯.⋯⋯.⋯⋯..⋯.⋯.⋯⋯..⋯.⋯⋯.⋯⋯⋯.⋯.⋯..⋯.⋯⋯⋯
7、⋯.⋯⋯⋯⋯.⋯⋯.⋯.⋯⋯..13:2.3.3HBase.⋯.⋯⋯.⋯.⋯.⋯⋯⋯⋯.⋯⋯⋯⋯..⋯.⋯.⋯.⋯..⋯.⋯.⋯⋯.⋯⋯.⋯⋯⋯⋯.⋯.⋯⋯.⋯.⋯⋯.⋯.⋯142.4新浪微博数据集的获取⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.142.5本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.183基于HRank的微博用户影响力评价⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..193.1微博用户影响力和H指数简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯193.2HRank用户影响力模型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8、⋯⋯⋯⋯⋯193.2.1H指数在微博领域的重定义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯193.2.2HRank用户影响力模型的构建⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯203.3用户影响力算法基于MapReduce的实现⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯213.3.1PageRank算法基于MapReduce的实现⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯213.3.2HRank算法基于MapReduce的实现⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.23万方数据目录3.
此文档下载收益归作者所有