a tight analysis of the greedy algorithm for set cover

a tight analysis of the greedy algorithm for set cover

ID:34086891

大小:207.52 KB

页数:13页

时间:2019-03-03

a tight analysis of the greedy algorithm for set cover_第1页
a tight analysis of the greedy algorithm for set cover_第2页
a tight analysis of the greedy algorithm for set cover_第3页
a tight analysis of the greedy algorithm for set cover_第4页
a tight analysis of the greedy algorithm for set cover_第5页
资源描述:

《a tight analysis of the greedy algorithm for set cover》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、ATightAnalysisoftheGreedyAlgorithmforSetCoverPetrSlavkNovember19,1995AbstractWeestablishsigni cantlyimprovedboundsontheperformanceofthegreedyal-gorithmforapproximatingsetcover.Inparticular,weprovidethe rstsubstantialimprovementofthe20yearoldclassicalharmonicupperbound,

2、H(m),ofJohnson,Lo-vasz,andChvatal,byshowingthattheperformanceratioofthegreedyalgorithmis,infact,exactlylnm?lnlnm+(1),wheremisthesizeofthegroundset.Thedi erencebetweentheupperandlowerboundsturnsouttobelessthan1:1.Thisprovidesthe rsttightanalysisofthegreedyalgorithm,aswel

3、lasthe rstupperboundthatliesbelowH(m)byafunctiongoingtoin nitywithm.WealsoshowthattheapproximationguaranteeforthegreedyalgorithmisbetterthantheguaranteerecentlyestablishedbySrinivasanfortherandomizedroundingtechnique,thusimprovingtheboundsontheintegralitygap.Ourimprovemen

4、tsresultfromanewapproachwhichmightbegenerallyusefulforattackingothersimilarproblems.Keywords:ApproximationAlgorithms,CombinatorialOptimization,FractionalSetCover,GreedyAlgorithm,PartialSetCover,SetCover.DepartmentofMathematics,StateUniversityofNewYorkatBu alo,Bu alo,NY14

5、214,USA.E-mail:slavik@math.buffalo.eduPetrSlavk,SetCover,November19,199511IntroductionSetcoverisoneoftheoldestandmoststudiedNP-hardproblems([8],[4],[7],[9],[1],etc.).GivenagroundsetUofmelements,thegoalistocoverUwiththesmallestpossiblenumberofsets.Oneofthebestpolynomialt

6、imealgorithmsforapproximatingsetcoveristhegreedyalgorithm:ateachstepchoosetheunusedsetwhichcoversthelargestnumberofremainingelements.JohnsonandLovasz([7],[9])showedthattheperformanceratioofthegreedymethodisnoworsethanH(m),thwhereH(m)=1++1=misthemharmonicnumber,avaluewh

7、ichisclearlybetweenlnmandlnm+1.Chvatalin[1]extendedtheirresultstotheweightedversionoftheproblem.Other,morecomplexapproximationalgorithms,havealsobeenstudied.Forexample,Halldorsson'slocalimprovements"modi cationofthegreedyalgorithm([5],[6])improvedtheupperboundtoaboutH(

8、m)?0:43andsuggestedthatforlargegroundsetsthisimprovementcanbemadeevenstronger.Srinivasan'sanalys

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。