A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation

A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation

ID:39831082

大小:255.87 KB

页数:6页

时间:2019-07-12

A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation_第1页
A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation_第2页
A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation_第3页
A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation_第4页
A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation_第5页
资源描述:

《A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、NinthMexicanInternationalConferenceonArtificialIntelligenceAcomparationbetweenBeeSwarmOptimizationandGreedyAlgorithmfortheKnapsackProblemwithbeereallocationMarcoAurelioSotelo-Figueroa,Mar´ıadelRosarioBaltazar-Flores,JuanMart´ınCarpio,VictorZamudioDivisiondeEstudiosdePosgradoeInvestigaci´on´In

2、stitutoTecnologicodeLe´on,ITL´Av.TecnologicoS/N,Fracc.JuliandeObreg´on,C.P.37290,Le´onGuanajuato,M´exico.´masotelof@gmail.com,charobalmx@yahoo.com.mx,jmcarpio61@hotmail.com,vic.zamudio@ieee.orgAbstract—TheKnapsackProblemisaclassicalcombinato-oflivingcreaturesmotivatedresearcherstoundertakethe

3、rialproblemwhichcanbesolvedinmanyways.OneofthesestudyofwhattodayisknownasSwarmIntelligence[3].waysistheGreedyAlgorithmwichgivesusanapproximatedTwofundamentalconcepts,self-organizationanddivisionsolutiontotheproblem.Anotherwaytosolveitisusingtheoflabour,arenecessaryandsufficientpropertiestoobta

4、inSwarmIntelligenceapproach,basedonthestudyofactionsofindividualsinvariousdecentralizedsystems.Optimizationswarmintelligentbehavior.algorithmsinspiredontheintelligentbehaviorofhoneybeesareamongthemostrecentlyintroducedpopulationbasedTheBeeAlgorithm[4],orBA,isalsopartofthetechniques.Inthispape

5、r,anovelhybridalgorithmbasedonSwarmIntelligenceandthismimicsthehoneybeesandBeesAlgorithmandParticleSwarmOptimizationisappliedtotheirforagingbehavior.ThisalgorithmisbasedonarandomtheKnapsackProblem,althoughthecombinationofBAandsearchontheneighborhoodforcombinatorialandfunctionalPSOisgivenbyBSO

6、,BeeSwarmOptimization,thisalgorithmoptimization.usesthevelocityvector,thecollectivememoriesofPSOandthesearchbasedontheBA,inthiscaseweintroduceanotherwayTheKnapsackProblemisaclassicalcombinatorialprob-tousethebeealgorithminthePSOusingthebeesreallocation.Theobtainedresultsaremuchbetterwhencompa

7、redtothoselem[5][6]andcanbedescribedasfollows:“ImaginetakingprovidedbytheGreedyAlgorithm.atriptowhichyoucanonlycarryabackpackthat,logically,hasalimitedcapacity.Givenasetofitems,eachwithaKeywords-PSO,BA,BSO,KnapsackProblem,SwarmIntel-ligencewe

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。