第七章 正交小波基的构造

第七章 正交小波基的构造

ID:34075343

大小:319.50 KB

页数:10页

时间:2019-03-03

第七章 正交小波基的构造_第1页
第七章 正交小波基的构造_第2页
第七章 正交小波基的构造_第3页
第七章 正交小波基的构造_第4页
第七章 正交小波基的构造_第5页
资源描述:

《第七章 正交小波基的构造》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第七章正交小波基的构造本章讨论在MRA框架下如何构造正交小波基。由于MRA框架既可以由尺度函数生成,也可以由生成,因此我们从两个方面入手讨论构造正交小波基。本章中,滤波器代表高通滤波器;滤波器代表低通滤波器;7.1由尺度函数构造正交小波基1.由正交尺度函数构造正交小波基,构造步骤如下:(1)选择或使为一组正交基。(2)求:(7-1)或(7-2)(3)由求:(7-3)或(7-4)(4)由,构造正交小波基函数:(7-5)或(7-6)例1Haar小波的构造选择尺度函数显然为一正交归一基,则由式(7-3)可得这就是Haar小波函数,

2、其波形略。2.由尺度函数为Riesz基时构造正交小波基函数要找到一个多分辨率分析的尺度函数,使它的整数平移构成一个正交系列,有时候不太方便。但要找到一个函数,使它的整数位移构成一个Riesz基来构造一个多分辨率框架,从而构造一组正交小波基。首先给出Riesz基的定义:设函数张成的空间为的Riesz基的充分必要条件为存在两常数,使得对于所有都有(7-7)可以证明式(7-7)等价于因此我们可以定义一个,使得显然,满足即是正交基。且可以构成的多分辨率分析框架。由此可由入手,构造一个正交小波基。举例(略)可以证明如下:(1)除了时(

3、此时为Haar小波)例外,其他都不具有正交性,因此必须实行正交化处理过程。(2)正交的及其构造的小波函数(Battle-Lemarie小波函数)支集都为非紧的(定义域为整个实轴)。(3)当为偶数时,(或)关于对称,当奇数时,(或)关于对称。而所有Battle-Lemarie小波关于对称。并且已有学者证明和都具有指数衰减性。7.2紧支集正交小波基的性质和构造由MRA理论可知,尺度函数和小波函数均满足双尺度方程:(7-8a)(7-8b)由上式可知,即使是支集紧的,相应的的支集未必是紧的。因此既简单又重要的是要求式(7-8)的右边

4、仅包含有限项,此时只要作适当的平移变换即可将双尺度方程写成(7-9a)(7-9b)如此,若是正交MRA中紧支集的母函数,则由此构成的正交小波基的母函数也是紧支集的。现在的关键问题是要求出满足式(7-9a)的双尺度方程中的。由式(7-9a)我们发现,如果先直接寻找函数,然后再来确定有限项的是不容易的。相反,若有限长度的已确定,再来确定则容易些。我们先不考虑这样得到的是否满足多尺度分析的生成元的正交性等条件,而只考虑若给定一组常数,如何由解方程(7-9a)来求得的问题。7.2.1有限长双尺度方程的求解由有限长双尺度方程求解尺度函

5、数有多种方法,下面介绍常用的两种。解法1理论推求法。由式(4-57)可知:其中为的离散傅里叶变换:则这种方法看起来简单,但在具体应用时很难用数值方法求解,因此只有理论上的价值。解法2数值迭代法。(略)解法3解方程组法。若事先知道方程(7-9a)的解存在,且,则可简单的直接求出在所有二进小数上的值,如下:所以或在双尺度方程(7-9a)中,令,得(7-10)此方程组在标准化条件下,有唯一解。由式(5-11)求得后,利用双尺度方程即可求得之值。重复上述过程,即可求得一切二进小数之值(其中)。就数值计算而言,这足够了。7.2.2紧支

6、集正交小波基的构造构造紧支集正交小波基的双尺度方程也就是构造特征多项式的方法可归结为下列步骤:1)选定一整数。2)选定一多项式,使它满足以下三式:(5-11)(5-12)其中满足,其中(5-13)(5-14)1)寻找一实系数三角多项式,使得。选取方法是:从的每四个复零点中选两个,每对实零点中选一个,按照下式构造。2)则得最简单的情况是取,此时是正系数多项式,所以条件式(5-12)显然得到满足,且因当时,单调增加,因此,(5-15)故条件式(5-14)也得到满足。于是利用Riesz引理即可构作实系数三角多项式,满足由构作时,我

7、们选取时,我们选取在单位圆内的根,这相应于设计滤波器时选取最小相位。当时,的具体解析式为相应的为:当时:此时的非零长度为。当时:此时的非零长度为。图7-1Daubechies尺度函数(N=4,6,8,…40)图7-2Daubechies小波函数(N=4,6,8,…40)当时相应的尺度方程系数见表7-1(参考,彭P75),其相应的非零长度为,图7-1和7-2示出了一些尺度函数与小波母函数的图形。对这样的紧支集小波,我们讨论一下它的一般性质。(1)支集大小由式(5-15)得到不同下尺度函数的支集为其相应的小波母函数的支集为(2)

8、对称性问题尽管紧支集小波有支集紧的优点,但它一般没有对称性。可以证明,除Haar小波(其关于为反对称,其关于为对称)外,其他所有连续的紧支集正交小波基及其尺度函数都不具有任何对称性。(3)光滑性问题紧支集多尺度生成元的光滑性也较差。要增加的光滑度,则要增加支集长度,即时域支集变长,其光滑度

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。