资源描述:
《双圆盘转子系统混沌运动分析 毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、毕业论文毕业论文题目双圆盘转子系统混沌运动分析学院专业班级学生姓名性别指导教师职称2012年6月18日III摘要建立了转子系统局部碰摩动力学模型,利用数值积分和Poincaré映射方法,对转子系统由于局部碰摩耦合故障导致的非线性动力学行为进行了数值仿真研究,给出了系统响应随转子转动频率和偏心量变化的分叉图。分析了转子系统动力学行为的影响,以及一些典型的相平面图、轴心轨迹图等。通过对定子与转子发生碰摩与基础松动耦合故障时的实测结果验证了数值分析的正确性。通过分别以转速n,摩擦系数f,径向刚度kr,轴段长度a为分叉参数时转子系统局部碰摩的分叉与混沌行为分析,发现阻尼、定子
2、径向刚度和偏心距等参数明显影响系统运动特性。结果表明以转速为分叉参数时,转子系统响应经历了数次从混沌到周期解,再到混沌,再到周期解的过程,即混周交替出现过程,系统响应以拟周期运动为主并伴有混沌运动。加大阻尼减小定子径向刚度能减小发生碰摩的范围,系统通往混沌的道路以典型的倍周期分叉为主。以摩擦系数、径向刚度、轴段长度为分叉参数时转子系统系统响应拟周期或混沌运动为主,其间含有阵发性离开混沌和阵发性进入混沌及若干周期解。关键词:转子;碰摩;混沌;分叉IIIAbstractEstablishthelocalrubbingrotorsystemdynamicsmodel,usi
3、ngnumericalintegralandPoincaremappingmethod,displacedbecauseoflocalrubbingcoupledsubsystemsmalfunctioncausedthenonlineardynamicbehaviorinnumericalsimulationstudy,givesthesystemresponsewiththerotorrotatingfrequencyandvolumeofeccentricchangesbifurcationdiagram.Analyzingthefoundationlooseu
4、pondynamicbehaviorsofthequalityofsubsystems,andtheinfluenceofsometypicalphaseplan,axispathchart,etc.Throughtothestatorandrotorhappenwithloosecouplingbasedrubbingfaultwhenthemeasuredresultsverifythecorrectnessofthenumericalanalysis.Throughtherespectivelytospeedn,frictioncoefficientf,radi
5、alstiffnesskr,shaftlengthforabifurcationparameteroftherotorsystemattheforkofthelocalrubbingwithchaosbehavioranalysis,foundtheradial.TheresultsshowedthatWhiletherotationspeedwastakenasthefurcationparameter,theresponseofrotorsystemwouldgothroughtheprocessesforseveraltmiesfromchaostoperiod
6、icalsolutionandagaintochaosandoncemoretoperiodicalsolution,namelyappearingaprocessofchaosandperiodicalsolutionalternately.Increasingthedampingandreducingthestatorradialstiffnesswoulddecreasetherubbingscope.Thewaysleadtochaoswasmainlydoubleperiodicfurcation.Whentakingtherotationspeed,the
7、frictioncoefficient,theradialrigidity,andthelengthoftheshaftasthefurcationparameters,therotorsystemresponsewasmainlysimilarcycleconsistingorchaos,whichcontainsparoxysmalleavechaosandparoxysmalintochaosandanumberofperiodicsolution.KeyWords:Therotor;Rubbing;chaos;bifurcationIII目录