欢迎来到天天文库
浏览记录
ID:34038814
大小:70.50 KB
页数:5页
时间:2019-03-03
《东南大学几何与代数b(64学时)教学大纲2010》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、几何与代数教学大纲(总学分:4;总上课学时:64;课外上机时数:4)东南大学数学系一.课程的性质与目的本课程是工科电类专业学生本科阶段关于几何及离散量数学重要的数学基础课程。本课程的目的是使学生熟悉空间解析几何与线性代数基本概念,掌握用坐标及向量的方法讨论几何图形的方法,熟悉空间中简单的几何图形的方程及其特点,掌握线性代数的基本理论和基本方法,熟悉矩阵运算的基本规律和基本技巧,熟悉矩阵在等价关系、相似关系、合同关系下的标准形,提高其空间想象能力、抽象思维和逻辑思维的能力,为后继课程的学习做好准备,并为用线性代数的理论解决实际问题打下基础。二.课程内容的教学要求1.向量代数平面与直线(1)
2、理解几何向量的概念及其加法、数乘运算,熟悉运算规律,了解两个向量共线和三个向量共面的充分必要条件;(2)理解空间直角坐标系的概念,理解仿射坐标系的概念,掌握向量的坐标表示;(3)理解向量的数量积、向量积和混合积的概念,理解它们的几何意义,了解相关的运算性质,掌握利用坐标进行计算的方法;(4)理解平面的法向量的概念,熟练掌握平面的方程的确定方法,熟悉特殊位置的平面方程的形式;(5)理解直线的方向向量的概念,熟练掌握直线的对称方程、一般方程及参数方程的确定方法;(6)了解直线、平面间的夹角的定义,了解点与直线、平面间的距离的定义,并掌握相关的计算;(7)了解平面束的概念,并会用平面束处理相关
3、几何问题。2.矩阵和行列式(1)理解矩阵和维向量的概念;(2)理解矩阵和向量的加法、数乘、乘法运算及矩阵的转置及相关的运算性质,熟练掌握上述运算;(3)理解零矩阵、单位矩阵、数量矩阵、对角阵、三角阵、对称矩阵、反对称矩阵的定义及其运算性质;(4)理解二阶、三阶行列式的定义,熟练掌握它们的计算;(5)知道全排列及全排列的逆序数的定义,会计算排列的逆序数,知道对换及对换对于排列的奇偶性的影响;(6)了解阶行列式的定义,会用行列式的定义计算简单的阶行列式;(7)掌握行列式的性质,熟练掌握行列式按行、列展开公式,了解行列式的乘法定理;(1)掌握利用行列式的性质计算行列式的方法;(2)理解矩阵的可
4、逆性的概念,掌握矩阵可逆的判别方法,掌握逆矩阵的性质;(3)理解伴随矩阵的概念,熟练掌握伴随矩阵的性质,掌握利用伴随矩阵计算矩阵的逆矩阵;(4)理解Cramer法则,掌握用Cramer法则求方程组的解的方法;(5)掌握分块矩阵的运算规则,掌握典型的分块方法。3.矩阵的初等变换与Gauss消元法(1)理解矩阵的初等行变换与Gauss消元法的关系,掌握求解线性方程组的Gauss消元法;(2)理解向量组的线性组合和线性表示的概念及相关的性质,掌握相关计算;(3)理解向量组的线性相关、线性无关的概念以及有关性质,掌握向量组的线性相关性的判别方法;(4)理解向量组的极大线性无关组和秩的概念,理解向
5、量组的秩的性质,熟练掌握向量组的秩的计算,并会求向量组的极大线性无关组;(5)理解矩阵的秩的概念,理解向量组的秩与矩阵的秩间的关系,熟练掌握矩阵的秩的计算;(6)理解齐次线性方程组有非零解的充要条件,理解齐次线性方程组的基础解系的概念,熟练掌握基础解系的求法;(7)理解非齐次线性方程组有解的充要条件,理解非齐次线性方程组与相应的齐次线性方程组的解之间的关系,熟练掌握非齐次线性方程组的通解的表达式的求法;(8)理解矩阵的初等变换及矩阵的等价关系的概念;了解矩阵的等价标准形的概念,并会用矩阵的等价标准形讨论矩阵的性质;(9)理解矩阵的初等变换与矩阵的乘法间的关系;(10)了解可逆矩阵与初等矩
6、阵间的关系,掌握用初等变换求逆矩阵的方法;(11)掌握求简单的矩阵方程的解的方法;(12)了解矩阵的分块初等变换,会利用这一方法解决典型的矩阵问题。4.向量空间(1)理解向量空间、子空间的概念,会判断向两空间的子集是否构成子空间,(2)理解向量空间的基及维数的概念,会求由一向量组生成的子空间及一齐次线性方程组的解空间的基及它们的维数;(3)知道坐标变换公式,会求两组基间的过渡矩阵;(4)理解向量的内积、长度及正交性的概念,了解向量内积的基本性质;(5)理解向量空间的标准正交基的概念,熟练掌握Schimidt正交化方法;(6)理解正交矩阵的概念,了解正交矩阵的性质。5.相似矩阵和矩阵的特征
7、值、特征向量(1)理解矩阵的特征值、特征向量的概念,熟练掌握矩阵的特征多项式、特征值、特征向量的求法;(1)熟练掌握特征多项式、特征值、特征向量的性质;(2)理解矩阵的迹的概念,理解矩阵的迹、行列式与其特征值间的关系;(3)理解矩阵的相似性概念,理解两矩阵相似的必要条件;(4)熟练掌握矩阵相似于对角阵的各种充要条件,并熟练掌握相应的对角阵及相似变换矩阵的求法;(5)熟练掌握实对称矩阵的性质,熟练掌握求正交矩阵将实对称矩阵化成对角阵的
此文档下载收益归作者所有