资源描述:
《A complete proof of the differentiable 14-pinch sphere theorem.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ChristopherHopperBenAndrewsTheRicciFlowinRiemannianGeometryAcompleteproofofthedifferentiable1=4-pinchingspheretheorem27July2010SpringerAuthorsChristopherHopperMathematicalInstitute24{29StGiles'OxfordOX13LBEnglandhopper@maths.ox.ac.ukBenAndrewsAustralianNationalUniversity
2、CanberraACT0200Australiaben.andrews@anu.edu.auTobepublishedinSpringer'sLectureNotesinMathematicsbookseries.Theoriginalpublicationisavailableatwww.springerlink.com/content/110312/Forintheverytorrent,tempest,andasImaysay,whirlwindofyourpassion,youmustacquireandbegetatempera
3、ncethatmaygiveitsmoothness.
4、Shakespeare,Hamlet.ivPrefaceThereisafamoustheorembyRauch,KlingenbergandBergerwhichstatesthatacompletesimplyconnectedn-dimensionalRiemannianmanifold,forwhichthesectionalcurvaturesarestrictlybetween1and4,ishomeomorphictoan-sphere.Ithasbeenalongst
5、andingopenconjectureastowhetherornotthe`homeomorphism'conclusioncouldbestrengthenedtoa`dieo-morphism'.SincetheintroductionoftheRicci
owbyHamilton[Ham82b]sometwodecadesago,therehavebeenseveralinroadsintothisproblem
6、particularlyindimensionsthreeandfour
7、whichhavethrownlight
8、uponapossibleproofofthisresult.Onlyrecentlyhasthisconjecture(andaconsiderablystrongergeneralisation)beenprovedbySimonBrendleandRichardSchoen.Theaimofthepresentbookistoprovideauniedexpositoryaccountofthedieren-tiable1=4-pinchingspheretheoremtogetherwiththenecessarybackgr
9、oundmaterialandrecentconvergencetheoryfortheRicci
owinn-dimensions.Thisaccountshouldbeaccessibletoanyonefamiliarwithenoughdierentialgeometrytofeelcomfortablewithtensors,covariantderivatives,andnormalcoordinates;andenoughanalysistofollowstandardpdearguments.Theproofwepres
10、entisself-contained(exceptforthequotedCheeger-GromovcompactnesstheoremforRiemannianmetrics),andincorporatesseveralim-provementsonwhatiscurrentlyavailableintheliterature.Broadlyspeaking,thestructureofthisbookfallsintothreemaintop-ics.Therstcentresaroundtheintroductionanda
11、nalysistheRicci
owasageometricheat-typepartialdierentialequation.ThesecondconcernsPerel'man'smo