Lie Sphere Geometry

Lie Sphere Geometry

ID:40636875

大小:2.36 MB

页数:213页

时间:2019-08-05

Lie Sphere Geometry_第1页
Lie Sphere Geometry_第2页
Lie Sphere Geometry_第3页
Lie Sphere Geometry_第4页
Lie Sphere Geometry_第5页
资源描述:

《Lie Sphere Geometry》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、UniversitextEditorialBoard(NorthAmerica):S.AxlerK.A.RibetThomasE.CecilLieSphereGeometryWithApplicationstoSubmanifoldsSecondEditionThomasE.CecilDepartmentofMathematicsandComputerScienceCollegeoftheHolyCross1CollegeStreetWorcester,MA01610cecil@mathcs.holycross.eduEditorialBoard(NorthAmerica

2、):S.AxlerK.A.RibetMathematicsDepartmentMathematicsDepartmentSanFranciscoStateUniversityUniversityofCaliforniaatBerkeleySanFrancisco,CA94132Berkeley,CA94720-3840USAUSAaxler@sfsu.eduribet@math.berkeley.eduISBN:978-0-387-74655-5e-ISBN:978-0-387-74656-2LibraryofCongressControlNumber:200793669

3、0MathematicsSubjectClassification(2000):53-02,53A07,53A40,53B25,53C40,53C42©2008SpringerScience+BusinessMedia,LLCAllrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrittenpermissionofthepublisher(SpringerScience+BusinessMediaLLC,233SpringStreet,NewYork,NY10013,U.S

4、.A.),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden.Theuseinthispublicationoftradenames,trademarks,s

5、ervicemarksandsimilarterms,eveniftheyarenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubjecttoproprietaryrights.Printedonacid-freepaper.987654321springer.com(JLS/SB)Tomysons,Tom,Mark,andMichaelPrefacetotheFirstEditionThepurposeofthismonographistoprovidean

6、introductiontoLiesgeometryoforientedspheresanditsrecentapplicationstothestudyofsubmanifoldsofEuclideanspace.Lie[104]introducedhisspheregeometryinhisdissertation,publishedasapaperin1872,anduseditinhisstudyofcontacttransformations.Thesubjectwasactivelypursuedthroughtheearlypartofthetwentien

7、thcentury,culminatingwiththepublicationin1929ofthethirdvolumeofBlaschkes[10]VorlesungenüberDifferentialgeometrie,whichisdevotedentirelytoLiespheregeometryanditssubgeometries.Afterthis,thesubjectfelloutoffavoruntil1981,whenPinkall[146]useditastheprincipaltoolinhiscla

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。