欢迎来到天天文库
浏览记录
ID:33790695
大小:1.56 MB
页数:140页
时间:2018-05-26
《自动控制ppt教学课件第8章非线性控制系统》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第八章非线性控制系统控制系统有线性和非线性之分。在以上各章,讨论了线性系统各方面的问题。但是严格地说,理想的线性系统在实际中并不存在。在分析非线性系统时,人们首先会想到使用在工作点附近小范围内线性化的方法,当实际系统的非线性程度不严重时,采用线性方法去进行研究具有实际意义。但是,如果实际系统的非线性程度比较严重,则不能采用在工作点附近小范围内线性化的方法去进行研究,否则会产生较大的误差,甚至会导致错误的结论。这时应采用非线性系统的研究方法进行研究。非线性系统的分析方法大致可分为两类。运用相平面法或数字计算机仿真可以求得非线性系统
2、的精确解,进而分析非线性系统的性能,但是相平面法只适用于一阶、二阶系统;建立在描述函数基础上的谐波平衡法可以对非线性系统作出定性分析,是分析非线性系统的简便而实用的方法,尤其在解决工程实际问题上,不须求得精确解时更为有效。8-1引言一常见非线性特性对系统运动的影响图8-1只要系统中包含一个或一个以上具有非线性特性的元件,就称其为非线性系统。所以,严格地说,实际的的控制系统都是非线性系统。所谓线性系统仅仅是实际系统忽略了非线性因素后的理想模型。从非线性环节的输入与输出之间存在的函数关系划分,非线性特性可分为单值函数与多值函数两类。
3、例如死区特性、饱和特性及理想继电特性属于输入与输出间为单值函数关系的非线性特性。间隙特性和一般继电特性则属于输入与输出之间为多值函数关系的非线性特性。下面从物理概念上对包含这些非线性特性的系统进行一些分析,有时为了说明问题,仍运用线性系统的某些概念和方法。虽然分析不够严谨,但便于了解,而且所得出的一些概念和结论对于从事实际系统的调试工作是具有参考价值的。1:死区死区特性如图8-1(a)所示。对于线性无静差系统,系统进入稳态时,稳态误差为零。若控制器中包含有死区特性,则系统进入稳态时,稳态误差可能为死区范围内的某一值,因此死区对系
4、统最直接的影响是造成稳态误差。当输入信号是斜坡函数时,死区的存在会造成系统输出量在时间上的滞后,从而降低了系统的跟踪速度。摩擦死区特性可能造成运动系统的低速不均匀;另一方面,死区的存在会造成系统等效开环增益的下降,减弱过渡过程的振荡性,从而可提高系统的稳定性。死区也能滤除在输入端作小幅度振荡的干扰信号,提高系统的抗干扰能力。在图8-2所示的非线性系统中,K1、K2、K3分别为测量元件、放大元件和执行元件的传递系数,Δ1、Δ2、Δ3分别为它们的死区。若把放大元件和执行元件的死区折算到测量元件的位置(此时放大元件和执行元件无死区),
5、则有下式成立:显而易见,处于系统前向通路最前面的测量元件,其死区所造成的影响最大,而放大元件和执行元件死区的不良影响可以通过提高该元件前级的传递系数来减小。图8-22:饱和饱和特性如图8-1(b)所示。饱和特性将使系统在大信号作用之下的等效增益降低,一般地讲,等效增益降低,会使系统超调量下降,振荡性减弱,稳态误差增大。处于深度饱和的控制器对误差信号的变化失去反应,从而使系统丧失闭环控制作用。在一些系统中经常利用饱和特性作信号限幅,限制某些物理参量,保证系统安全合理地工作。若线性系统为振荡发散,当加入饱和限制后,系统就会出现自持振
6、荡的现象。这是因为随着输出量幅值的增加,系统的等效增益在下降,系统的运动有收敛的趋势;而当输出量幅值减小时,等效增益增加,系统的运动有发散的趋势,故系统最终应维持等幅振荡,出现自持振荡现象。3:间隙又称回环,间隙特性如图8-1(c)所示。在齿轮传动中,由于间隙存在,当主动齿轮方向改变时,从动轮保持原位不动,直到间隙消失后才改变转动方向。铁磁元件中的磁滞现象也是一种回环特性。间隙特性对系统性能的影响:一是增大了系统的稳态误差,降低了控制精度,这相当于死区的影响;二是因为间隙特性使系统频率响应的相角迟后增大,从而使系统过渡过程的振荡
7、加剧,甚至使系统变为不稳定。4:继电特性继电特性如图8-1(d)所示,其特性中包含了死区、回环及饱和特性。当h=0时,称为理想继电特性。理想继电特性串入系统,在小偏差时开环增益大,系统的运动一般呈发散性质;而在大偏差时开环增益很小,系统具有收敛性质。故理想继电控制系统最终多半处于自持振荡工作状态。继电特性能够使被控制的执行装置在最大输入信号下工作,可以充分发挥其调节能力,故有可能利用继电特性实现快速跟踪。至于带死区的继电特性,将会增加系统的定位误差,而对其它动态性能的影响,类似于死区、饱和非线性特性的综合效果。二.非线性系统特征
8、1:稳定性线性系统的稳定性只取决于系统的结构和参数,而与外作用和初始条件无关。因此,讨论线性系统的稳定性时,可不考虑外作用和初始条件。只要线性系统是稳定的,就可以断言,这个系统所有可能的运动都是稳定的。对于非线性系统,不存在系统是否稳定的笼统概念,必须针对系统某
此文档下载收益归作者所有