资源描述:
《利用导数求单调区间》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、单调区间讨论例.设,求函数的单调区间.分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力.解:.当时.(i)当时,对所有,有.即,此时在内单调递增.(ii)当时,对,有,即,此时在(0,1)内单调递增,又知函数在x=1处连续,因此,函数在(0,+)内单调递增(iii)当时,令,即.解得.因此,函数在区间内单调递增,在区间内也单调递增.令,解得.因此,函数在区间内单调递减.(2009安徽卷理)已知函数,讨论的单调性.①当,即时,方程有两个不同的实根,,.+0_0+单调递增极大单调递减极小单调递增此时在上单调递增,在是上单调递减,在上单调递增.3.设函数在处取得极
2、值,且曲线在点处的切线垂直于直线.(Ⅰ)求的值;(Ⅱ)若函数,讨论的单调性.(3)方程有两个不相等实根w.w.w.k.s.5.u.c当函数当时,故上为减函数时,故上为增函数(2009山东卷文)已知函数,其中(1)当满足什么条件时,取得极值?(2)已知,且在区间上单调递增,试用表示出的取值范围.所以当时,x(-∞,x1)x1(x1,x2)x2(x2,+∞)f’(x)+0-0+f(x)增函数极大值减函数极小值增函数所以在x1,x2处分别取得极大值和极小值.当时,x(-∞,x2)x2(x2,x1)x1(x1,+∞)f’(x)-0+0-f(x)减函数极小值增函数极大值减函数所以在x1,x2处分别取
3、得极大值和极小值.综上,当满足时,取得极值.(2)要使在区间上单调递增,需使在上恒成立.即恒成立,所以设,,令得或(舍去),当时,,当时,单调增函数;当时,单调减函数,所以当时,取得最大,最大值为.所以当时,,此时在区间恒成立,所以在区间上单调递增,当时最大,最大值为,所以综上,当时,;当时,【命题立意】:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.(2009浙江文)已知函数.(I)若函数的图象过原点,且在原点处的切线
4、斜率是,求的值;(II)若函数在区间上不单调,求的取值范围.解析(Ⅰ)由题意得又,解得,或(Ⅱ)函数在区间不单调,等价于导函数在既能取到大于0的实数,又能取到小于0的实数即函数在上存在零点,根据零点存在定理,有,即:整理得:,解得